用动态规划算法解Travelling Salesman Problem(TSP)问题

2023-11-05 23:20

本文主要是介绍用动态规划算法解Travelling Salesman Problem(TSP)问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用动态规划算法解Travelling Salesman Problem(TSP)问题

  • 基础知识
  • 动态规划的求解过程
    • 动态规划方程的推导
    • 状态压缩
  • 源码:
  • 输入数据:

基础知识

  Travelling Salesman Problem (TSP) 是最基本的路线问题。它寻求的是旅行者由起点出发,通过所有给定的需求点后,再次返回起点所花费的最小路径成本,也叫旅行商问题、旅行推销员问题、担货郎问题等。
  动态规划算法(Dynamic Programming,简称DP)通常用于求解具有某种最优性质的问题,其基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后由这些子问题的解再得到原问题的解。

动态规划的求解过程

  下面来验证一下此方法求解的可行性。
  设 s,s1,s2…s为满足题意的最短回路。假设从s到s1的路径已经确定,则问题转化为从s1到s的最短路径问题。而很显然,s1,s2…s一定可以构成一条最短路径,所以构成最优子结构性质,可以用动态规划求解。

动态规划方程的推导

  用 V’ 表示一个点的集合,假设从顶点 s 出发, d ( i , V’ ) 表示当前到达顶点 i,经过 V’ 集合中所有顶点一次的最小花费。

  1. .当 V’ 为仅包含起点的集合,也就是
    d ( s , { s } ) = 0 d(s,\{ s\} ) = 0 d(s,{s})=0
  2. 其他情况,则对子问题求最优解。需在 V’ 这个城市集合中,尝试每一个城市结点,并求出最优解。
    在这里插入图片描述
  3. 最后的求解方式为:
    在这里插入图片描述

其中 S 为包含所有点的集合。把公式一套,题就解了。

状态压缩

  推到动态规划方程时,我们注意到 V’ 是一个数的集合,而且解决的问题规模比较小,于是可以用一个二进制数来存储这个集合。简单来说就是——如果城市 k 在集合 V’ 中,那么存储集合的变量 i 的第 k 位就为 1,否则为 0。由于有 n 个城市,所有的状态总数我们用 M 来表示,那么很明显:M = 2^n,而 0 到 2^n -1 的所有整数则构成了 V’ 的所有状态。这样,结合位运算,动归方程的状态表示就很容易了。

源码:

#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
// 定义常量
const int INF = 0x3f3f3f3f;
#define sqr(x) ((x)*(x))
// 定义变量
string file_name;
int type; // type == 1 满秩矩阵格式, type == 2 二维坐标式
int s;
int N;// 城市结点数量
int init_point;
double **dp; // 动态规划状态数组dp[i][j],i表示集合V’,j表示当前到达的城市结点
double **dis; // 两个城市结点之间的距离
double ans;
// 定义结构体
struct vertex {double x, y; // 城市结点的坐标int id; // 城市结点的idint input(FILE *fp) {return fscanf(fp, "%d %lf %lf", &id, &x, &y);}
}*node;double EUC_2D(const vertex &a, const vertex &b) {return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));
}void io() { // 数据读入printf("input file_name and data type\n");cin >> file_name >> type;FILE *fp = fopen(file_name.c_str(), "r");fscanf(fp, "%d", &N);node = new vertex[N + 5];dis = new double*[N + 5];if (type == 1) {for (int i = 0; i < N; i++) {dis[i] = new double[N];for (int j = 0; j < N; j++)fscanf(fp, "%lf", &dis[i][j]);}}else {for (int i = 0; i < N; i++)node[i].input(fp);for (int i = 0; i < N; i++) {dis[i] = new double[N];for (int j = 0; j < N; j++)dis[i][j] = EUC_2D(node[i], node[j]);// 计算城市之间的距离}}fclose(fp);return;
}void init() { // 数据初始化dp = new double*[(1 << N) + 5];for (int i = 0; i < (1 << N); i++) {dp[i] = new double[N + 5];for (int j = 0; j < N; j++)dp[i][j] = INF;} // 初始化,除了dp[1][0],其余值都为INFans = INF;return;
}double slove() {int M = (1 << N);// M就是第四部分所说的V’状态总数,1<<N表示2^N,总共有2^N种状态dp[1][0] = 0;// 假设固定出发点为0,从0出发回到0的花费为0。TSP只要求是一个环路,所以出发点可以任选for (int i = 1; i < M; i++) {// 枚举V’的所有状态for (int j = 1; j < N; j++) {// 选择下一个加入集合的城市if (i & (1 << j)) continue;// 城市已经存在于V’之中if (!(i & 1)) continue;// 出发城市固定为0号城市for (int k = 0; k < N; k++) {// 在V’这个城市集合中尝试每一个结点,并求出最优解if (i & (1 << k)) {// 确保k已经在集合之中并且是上一步转移过来的结点dp[(1 << j) | i][j] = min(dp[(1 << j) | i][j], dp[i][k] + dis[k][j]); // 转移方程} // 将j点加入到i集合中}}}for (int i = 0; i < N; i++)ans = min(dp[M - 1][i] + dis[i][0], ans);// 因为固定了出发点,所以要加上到城市0的距离。另外要从所有的完成整个环路的集合V’中选择,完成最后的转移return ans;
}int main() {io();init();string tmp = file_name + ".sol";FILE *fp = fopen(tmp.c_str(), "w");fprintf(fp, "%.2lf\n", slove());delete[] dp;delete[] node;delete[] dis;fclose(fp);return 0;
}

输入数据:

若城市数据文件如下所示:

     161   38.24   20.422   39.57   26.153   40.56   25.324   36.26   23.125   33.48   10.546   37.56   12.197   38.42   13.118   37.52   20.449   41.23   9.1010   41.17   13.0511   36.08   -5.2112   38.47   15.1313   38.15   15.3514   37.51   15.1715   35.49   14.3216   39.36   19.56

这篇关于用动态规划算法解Travelling Salesman Problem(TSP)问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/353106

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监