用动态规划算法解Travelling Salesman Problem(TSP)问题

2023-11-05 23:20

本文主要是介绍用动态规划算法解Travelling Salesman Problem(TSP)问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用动态规划算法解Travelling Salesman Problem(TSP)问题

  • 基础知识
  • 动态规划的求解过程
    • 动态规划方程的推导
    • 状态压缩
  • 源码:
  • 输入数据:

基础知识

  Travelling Salesman Problem (TSP) 是最基本的路线问题。它寻求的是旅行者由起点出发,通过所有给定的需求点后,再次返回起点所花费的最小路径成本,也叫旅行商问题、旅行推销员问题、担货郎问题等。
  动态规划算法(Dynamic Programming,简称DP)通常用于求解具有某种最优性质的问题,其基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后由这些子问题的解再得到原问题的解。

动态规划的求解过程

  下面来验证一下此方法求解的可行性。
  设 s,s1,s2…s为满足题意的最短回路。假设从s到s1的路径已经确定,则问题转化为从s1到s的最短路径问题。而很显然,s1,s2…s一定可以构成一条最短路径,所以构成最优子结构性质,可以用动态规划求解。

动态规划方程的推导

  用 V’ 表示一个点的集合,假设从顶点 s 出发, d ( i , V’ ) 表示当前到达顶点 i,经过 V’ 集合中所有顶点一次的最小花费。

  1. .当 V’ 为仅包含起点的集合,也就是
    d ( s , { s } ) = 0 d(s,\{ s\} ) = 0 d(s,{s})=0
  2. 其他情况,则对子问题求最优解。需在 V’ 这个城市集合中,尝试每一个城市结点,并求出最优解。
    在这里插入图片描述
  3. 最后的求解方式为:
    在这里插入图片描述

其中 S 为包含所有点的集合。把公式一套,题就解了。

状态压缩

  推到动态规划方程时,我们注意到 V’ 是一个数的集合,而且解决的问题规模比较小,于是可以用一个二进制数来存储这个集合。简单来说就是——如果城市 k 在集合 V’ 中,那么存储集合的变量 i 的第 k 位就为 1,否则为 0。由于有 n 个城市,所有的状态总数我们用 M 来表示,那么很明显:M = 2^n,而 0 到 2^n -1 的所有整数则构成了 V’ 的所有状态。这样,结合位运算,动归方程的状态表示就很容易了。

源码:

#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
// 定义常量
const int INF = 0x3f3f3f3f;
#define sqr(x) ((x)*(x))
// 定义变量
string file_name;
int type; // type == 1 满秩矩阵格式, type == 2 二维坐标式
int s;
int N;// 城市结点数量
int init_point;
double **dp; // 动态规划状态数组dp[i][j],i表示集合V’,j表示当前到达的城市结点
double **dis; // 两个城市结点之间的距离
double ans;
// 定义结构体
struct vertex {double x, y; // 城市结点的坐标int id; // 城市结点的idint input(FILE *fp) {return fscanf(fp, "%d %lf %lf", &id, &x, &y);}
}*node;double EUC_2D(const vertex &a, const vertex &b) {return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));
}void io() { // 数据读入printf("input file_name and data type\n");cin >> file_name >> type;FILE *fp = fopen(file_name.c_str(), "r");fscanf(fp, "%d", &N);node = new vertex[N + 5];dis = new double*[N + 5];if (type == 1) {for (int i = 0; i < N; i++) {dis[i] = new double[N];for (int j = 0; j < N; j++)fscanf(fp, "%lf", &dis[i][j]);}}else {for (int i = 0; i < N; i++)node[i].input(fp);for (int i = 0; i < N; i++) {dis[i] = new double[N];for (int j = 0; j < N; j++)dis[i][j] = EUC_2D(node[i], node[j]);// 计算城市之间的距离}}fclose(fp);return;
}void init() { // 数据初始化dp = new double*[(1 << N) + 5];for (int i = 0; i < (1 << N); i++) {dp[i] = new double[N + 5];for (int j = 0; j < N; j++)dp[i][j] = INF;} // 初始化,除了dp[1][0],其余值都为INFans = INF;return;
}double slove() {int M = (1 << N);// M就是第四部分所说的V’状态总数,1<<N表示2^N,总共有2^N种状态dp[1][0] = 0;// 假设固定出发点为0,从0出发回到0的花费为0。TSP只要求是一个环路,所以出发点可以任选for (int i = 1; i < M; i++) {// 枚举V’的所有状态for (int j = 1; j < N; j++) {// 选择下一个加入集合的城市if (i & (1 << j)) continue;// 城市已经存在于V’之中if (!(i & 1)) continue;// 出发城市固定为0号城市for (int k = 0; k < N; k++) {// 在V’这个城市集合中尝试每一个结点,并求出最优解if (i & (1 << k)) {// 确保k已经在集合之中并且是上一步转移过来的结点dp[(1 << j) | i][j] = min(dp[(1 << j) | i][j], dp[i][k] + dis[k][j]); // 转移方程} // 将j点加入到i集合中}}}for (int i = 0; i < N; i++)ans = min(dp[M - 1][i] + dis[i][0], ans);// 因为固定了出发点,所以要加上到城市0的距离。另外要从所有的完成整个环路的集合V’中选择,完成最后的转移return ans;
}int main() {io();init();string tmp = file_name + ".sol";FILE *fp = fopen(tmp.c_str(), "w");fprintf(fp, "%.2lf\n", slove());delete[] dp;delete[] node;delete[] dis;fclose(fp);return 0;
}

输入数据:

若城市数据文件如下所示:

     161   38.24   20.422   39.57   26.153   40.56   25.324   36.26   23.125   33.48   10.546   37.56   12.197   38.42   13.118   37.52   20.449   41.23   9.1010   41.17   13.0511   36.08   -5.2112   38.47   15.1313   38.15   15.3514   37.51   15.1715   35.49   14.3216   39.36   19.56

这篇关于用动态规划算法解Travelling Salesman Problem(TSP)问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/353106

相关文章

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1