用动态规划算法解Travelling Salesman Problem(TSP)问题

2023-11-05 23:20

本文主要是介绍用动态规划算法解Travelling Salesman Problem(TSP)问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用动态规划算法解Travelling Salesman Problem(TSP)问题

  • 基础知识
  • 动态规划的求解过程
    • 动态规划方程的推导
    • 状态压缩
  • 源码:
  • 输入数据:

基础知识

  Travelling Salesman Problem (TSP) 是最基本的路线问题。它寻求的是旅行者由起点出发,通过所有给定的需求点后,再次返回起点所花费的最小路径成本,也叫旅行商问题、旅行推销员问题、担货郎问题等。
  动态规划算法(Dynamic Programming,简称DP)通常用于求解具有某种最优性质的问题,其基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后由这些子问题的解再得到原问题的解。

动态规划的求解过程

  下面来验证一下此方法求解的可行性。
  设 s,s1,s2…s为满足题意的最短回路。假设从s到s1的路径已经确定,则问题转化为从s1到s的最短路径问题。而很显然,s1,s2…s一定可以构成一条最短路径,所以构成最优子结构性质,可以用动态规划求解。

动态规划方程的推导

  用 V’ 表示一个点的集合,假设从顶点 s 出发, d ( i , V’ ) 表示当前到达顶点 i,经过 V’ 集合中所有顶点一次的最小花费。

  1. .当 V’ 为仅包含起点的集合,也就是
    d ( s , { s } ) = 0 d(s,\{ s\} ) = 0 d(s,{s})=0
  2. 其他情况,则对子问题求最优解。需在 V’ 这个城市集合中,尝试每一个城市结点,并求出最优解。
    在这里插入图片描述
  3. 最后的求解方式为:
    在这里插入图片描述

其中 S 为包含所有点的集合。把公式一套,题就解了。

状态压缩

  推到动态规划方程时,我们注意到 V’ 是一个数的集合,而且解决的问题规模比较小,于是可以用一个二进制数来存储这个集合。简单来说就是——如果城市 k 在集合 V’ 中,那么存储集合的变量 i 的第 k 位就为 1,否则为 0。由于有 n 个城市,所有的状态总数我们用 M 来表示,那么很明显:M = 2^n,而 0 到 2^n -1 的所有整数则构成了 V’ 的所有状态。这样,结合位运算,动归方程的状态表示就很容易了。

源码:

#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
// 定义常量
const int INF = 0x3f3f3f3f;
#define sqr(x) ((x)*(x))
// 定义变量
string file_name;
int type; // type == 1 满秩矩阵格式, type == 2 二维坐标式
int s;
int N;// 城市结点数量
int init_point;
double **dp; // 动态规划状态数组dp[i][j],i表示集合V’,j表示当前到达的城市结点
double **dis; // 两个城市结点之间的距离
double ans;
// 定义结构体
struct vertex {double x, y; // 城市结点的坐标int id; // 城市结点的idint input(FILE *fp) {return fscanf(fp, "%d %lf %lf", &id, &x, &y);}
}*node;double EUC_2D(const vertex &a, const vertex &b) {return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));
}void io() { // 数据读入printf("input file_name and data type\n");cin >> file_name >> type;FILE *fp = fopen(file_name.c_str(), "r");fscanf(fp, "%d", &N);node = new vertex[N + 5];dis = new double*[N + 5];if (type == 1) {for (int i = 0; i < N; i++) {dis[i] = new double[N];for (int j = 0; j < N; j++)fscanf(fp, "%lf", &dis[i][j]);}}else {for (int i = 0; i < N; i++)node[i].input(fp);for (int i = 0; i < N; i++) {dis[i] = new double[N];for (int j = 0; j < N; j++)dis[i][j] = EUC_2D(node[i], node[j]);// 计算城市之间的距离}}fclose(fp);return;
}void init() { // 数据初始化dp = new double*[(1 << N) + 5];for (int i = 0; i < (1 << N); i++) {dp[i] = new double[N + 5];for (int j = 0; j < N; j++)dp[i][j] = INF;} // 初始化,除了dp[1][0],其余值都为INFans = INF;return;
}double slove() {int M = (1 << N);// M就是第四部分所说的V’状态总数,1<<N表示2^N,总共有2^N种状态dp[1][0] = 0;// 假设固定出发点为0,从0出发回到0的花费为0。TSP只要求是一个环路,所以出发点可以任选for (int i = 1; i < M; i++) {// 枚举V’的所有状态for (int j = 1; j < N; j++) {// 选择下一个加入集合的城市if (i & (1 << j)) continue;// 城市已经存在于V’之中if (!(i & 1)) continue;// 出发城市固定为0号城市for (int k = 0; k < N; k++) {// 在V’这个城市集合中尝试每一个结点,并求出最优解if (i & (1 << k)) {// 确保k已经在集合之中并且是上一步转移过来的结点dp[(1 << j) | i][j] = min(dp[(1 << j) | i][j], dp[i][k] + dis[k][j]); // 转移方程} // 将j点加入到i集合中}}}for (int i = 0; i < N; i++)ans = min(dp[M - 1][i] + dis[i][0], ans);// 因为固定了出发点,所以要加上到城市0的距离。另外要从所有的完成整个环路的集合V’中选择,完成最后的转移return ans;
}int main() {io();init();string tmp = file_name + ".sol";FILE *fp = fopen(tmp.c_str(), "w");fprintf(fp, "%.2lf\n", slove());delete[] dp;delete[] node;delete[] dis;fclose(fp);return 0;
}

输入数据:

若城市数据文件如下所示:

     161   38.24   20.422   39.57   26.153   40.56   25.324   36.26   23.125   33.48   10.546   37.56   12.197   38.42   13.118   37.52   20.449   41.23   9.1010   41.17   13.0511   36.08   -5.2112   38.47   15.1313   38.15   15.3514   37.51   15.1715   35.49   14.3216   39.36   19.56

这篇关于用动态规划算法解Travelling Salesman Problem(TSP)问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/353106

相关文章

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM