缺陷检测-如何用深度学习进行CT影像肺结节探测(附有基于Intel Extended Caffe的3D Faster RCNN代码开源)

本文主要是介绍缺陷检测-如何用深度学习进行CT影像肺结节探测(附有基于Intel Extended Caffe的3D Faster RCNN代码开源),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近期宜远智能参加阿里天池医疗AI大赛,用3D Faster RCNN模型在CT影像的肺结节探测上,取得了较好的成绩,特别是在计算资源充足的情况下,模型效果表现优异。这是他们的经验分享(tianchi.aliyun.com/comp   ),末尾还附有代码开源地址。

1.数据预处理

首先用SimpleITK把mhd图片读入,对每个切片使用Gaussian filter然后使用阈值-600把肺部图片二值化,然后再分析该切片的面积,去掉面积小于30mm2的区域和离心率大于0.99的区域,找到3D的连通区域。

只保留0.68L到8.2L体积的区域,并且如果大于6000 mm2的区域到切片的中心区域的距离大于62mm也删除该连通区。最后只留下一个最大的连通区域。

左边是原始图,右边是切完肺的。



在实际中预处理中,我们可视化了每个肺的部分切片,存在一些bad case。主要有以下3种,我们也对这3种情况做了优化:

  1. 把肺边缘结节切掉。因为阈值导致的,把二值化环境-600改成-150有改善。
  2. 切出来全部为黑的(未找到任何肺部区域)。有些ct图是从头部开始扫描的,导致影响了连通区域判断,需要手动查看该mhd文件,看里面的从第个切片到第几个切片是肺部,在做完二值化操作后,人为把前面和后面的切片全部设置为0。
  3. 切出来只有一侧肺部情况。

有些患者两个肺的大小差别比较大,需要调整阈值,放宽阈值标注,把大于6000 mm2的区域到切片的中心区域的距离大于62mm也删除该连通区,改为大于1500 mm2的区域到切片的中心区域的距离大于92mm也删除该连通区。并且在最后一步,不只保留最大的连通区,同时保留最大的两个连通区。

2.模型网络结构

我们的网络如图所示,整体上是采用Unet+Resnet的思想。里面每个Resnet Block都是由多个卷积层和bn层和relu层组成的。我们只展示主体结构(整体深度大概150多层):



3.整体优化思路

3.1 数据优化

  1. 肺部切割优化:这块其实没有完美的方法能把所有的肺一次性都切好。具体的思路我们已经在第1章数据预处理部分写出来了:我们会先切一遍,然后将切肺中切的不好的,再调参数重新切一次。
  2. 10mm 以下结节的训练数据增强。我们在没做数据增强的情况下跑出来的模型,在验证集上漏掉了不少10mm以下的结节,所以对这部分的结节做了增强。

3.2 工业界优化思路:模型架构 > 模型网络

我们的优化思路非常的工业界,用更多的计算资源,和更复杂的模型架构,并不把大量的时间用在调模型网络上面。

3.3 层次化Hard Mining

业界两套网络的做法比较普遍,比如用Unet切割或Faster RCNN检测,用3D CNN分类,如下图所示。



我们用的是如下统一的一套模型架构,即3D Faster RCNN的RPN网络,没有后续的全连接做分类,也并没有

再在后面接一套3D CNN来做降假阳。能减少需要调节的网络参数。



该hard mining的过程,其实就是用上一层的模型作为下一层的输入,每一层的训练数据都选取比上一层更难分的。



这套架构,无需2套网络,只需要选择一套较深的网络。

根据我们的经验,采取层次化模型训练,第二层模型froc能比第一层效果提升0.05,第三层能比第二层提升0.02。

3.4 LOSS 函数的设计

在计算loss函数的时候,我们做了2点优化。

1.在使用hard mining的时候,每个batchsize里面负例的个数会明显多于正例。为了防止算loss的时候被负例主导。我们将loss函数分成3个部分,负例的loss,正例的loss和边框的loss。



2.在上一节提到的层次化hard mining,我们在最后一层训练模型的时候,会修改loss函数的计算,对于分错的负例和正例,做加权。这个思路和focal loss是很像的。



比如:

红框里面的部分,本来是负例,却以很大的概率被分成正例,这部分在算loss的时候权值就大些。红框外面的部分权值就小些。



4.本次比赛的关键点总结:

1) 解决了基于Intel extended Caffe的150多层深度网络的 3D Faster RCNN RPN网络收敛问题。

可以从2个方向来解决(线下Phi卡平台均已验证过)。

a)将 drop out设置为 0.1。缺点是会容易过拟合。

b)先训练一个crop size为32的模型

用这个模型做pre train model,训练crop size 64的模型

依次类推。

直到完成crop size为128的模型训练

由于时间关系,我们并未比较这2种思路的效果。比赛中使用的是第1个思路,收敛的更快些。

2) 提出层次化Hard Mining的训练框架。并没有采用常见的,unet做分割+3D CNN降假阳 或者 2d faster rcnn做检测+3D CNN降假阳的思路。我们只用了一套网络。减少了需要调节的网络参数。

3) 重新设计了loss函数,防止负例主导loss的计算, 并且在降低loss的过程中,更聚焦于分错的训练样本。

5. 经验总结:

我们团队虽然过往深度学习架构经验多,但对医学影像处理的know how属于尚在探索之中。所以,我们的优化思路,是用更多的计算资源,和更复杂的模型架构,来弥补没有专用模型网络积累的短板。在第一轮比赛时通过调用比较充足的计算资源时效果比较显著,但在第二轮限定计算资源的多CPU的框架上,比较受限于计算资源及时间。

在计算资源比较充沛的情况下,选取比较深的Resnet效果会明显。在资源受限的实际场合或者现实的生产环境,我们有两点启发:

  1. 学会认同重复造轮子的基础性工作。第一轮比赛我们是pytorch框架,第二轮按要求在caffe上实现,特别是在Intel Extended Caffe对3D支持有限,重写了不少很基础的模块,这种貌似重复造轮子的工作,对我们提出了更高的要求,但也锻炼了我们深入到框架底层的能力,从而对不同框架的性能特点有更深的认识,这种重写甚至还因此帮我们找到我们第一版pytorch代码里detect部分存在的一个bug。
  2. 根据资源灵活优化训练策略乃至模型。我们的3D Faster RCNN 初期在Extended Caffe 上过于耗时,但因为在计算资源充足环境下我们的做法比较有效,所以没有去考虑一些更快的检测算法,比如SSD、YOLO等,这点也算是路径依赖的教训了。

代码开源说明:

我们在GitHub (github.com/YiYuanIntell ) 开源了核心代码,特别是将我们基于Intel Extended Caffe的3D Faster RCNN RPN训练模块发布到社区,相信这也是业内首个Intel extended Caffe版的150层网络3D Faster RCNN开源,希望对Intel 的深度学习社区用户有帮助。

该代码对医学影像的处理也展示了有效性,相信对医学影像领域AI实践的发展,对技术如何造福大众,能起到一些帮助。

通过开源,希望有同行提出性能优化、功能扩充等的修改建议,互相促进。

宜远智能是一家专注于大健康领域的AI创新企业,团队由多名AI博士、来自腾讯的算法高手、医疗领域专家构成。目前提供医学影像图像分析平台及服务。还提供专业皮肤AI方案以及基于阿里云市场的测肤API平台。对我们的开源代码及相关医学影像处理有任何疑问、建议、合作与求职意向,可联系:

tkots_wu@sina.com JohnnyGambler

csshshi@comp.hkbu.edu.hk 施少怀

End.

url:https://zhuanlan.zhihu.com/p/29984844

这篇关于缺陷检测-如何用深度学习进行CT影像肺结节探测(附有基于Intel Extended Caffe的3D Faster RCNN代码开源)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/349339

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]