缺陷检测-如何用深度学习进行CT影像肺结节探测(附有基于Intel Extended Caffe的3D Faster RCNN代码开源)

本文主要是介绍缺陷检测-如何用深度学习进行CT影像肺结节探测(附有基于Intel Extended Caffe的3D Faster RCNN代码开源),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近期宜远智能参加阿里天池医疗AI大赛,用3D Faster RCNN模型在CT影像的肺结节探测上,取得了较好的成绩,特别是在计算资源充足的情况下,模型效果表现优异。这是他们的经验分享(tianchi.aliyun.com/comp   ),末尾还附有代码开源地址。

1.数据预处理

首先用SimpleITK把mhd图片读入,对每个切片使用Gaussian filter然后使用阈值-600把肺部图片二值化,然后再分析该切片的面积,去掉面积小于30mm2的区域和离心率大于0.99的区域,找到3D的连通区域。

只保留0.68L到8.2L体积的区域,并且如果大于6000 mm2的区域到切片的中心区域的距离大于62mm也删除该连通区。最后只留下一个最大的连通区域。

左边是原始图,右边是切完肺的。



在实际中预处理中,我们可视化了每个肺的部分切片,存在一些bad case。主要有以下3种,我们也对这3种情况做了优化:

  1. 把肺边缘结节切掉。因为阈值导致的,把二值化环境-600改成-150有改善。
  2. 切出来全部为黑的(未找到任何肺部区域)。有些ct图是从头部开始扫描的,导致影响了连通区域判断,需要手动查看该mhd文件,看里面的从第个切片到第几个切片是肺部,在做完二值化操作后,人为把前面和后面的切片全部设置为0。
  3. 切出来只有一侧肺部情况。

有些患者两个肺的大小差别比较大,需要调整阈值,放宽阈值标注,把大于6000 mm2的区域到切片的中心区域的距离大于62mm也删除该连通区,改为大于1500 mm2的区域到切片的中心区域的距离大于92mm也删除该连通区。并且在最后一步,不只保留最大的连通区,同时保留最大的两个连通区。

2.模型网络结构

我们的网络如图所示,整体上是采用Unet+Resnet的思想。里面每个Resnet Block都是由多个卷积层和bn层和relu层组成的。我们只展示主体结构(整体深度大概150多层):



3.整体优化思路

3.1 数据优化

  1. 肺部切割优化:这块其实没有完美的方法能把所有的肺一次性都切好。具体的思路我们已经在第1章数据预处理部分写出来了:我们会先切一遍,然后将切肺中切的不好的,再调参数重新切一次。
  2. 10mm 以下结节的训练数据增强。我们在没做数据增强的情况下跑出来的模型,在验证集上漏掉了不少10mm以下的结节,所以对这部分的结节做了增强。

3.2 工业界优化思路:模型架构 > 模型网络

我们的优化思路非常的工业界,用更多的计算资源,和更复杂的模型架构,并不把大量的时间用在调模型网络上面。

3.3 层次化Hard Mining

业界两套网络的做法比较普遍,比如用Unet切割或Faster RCNN检测,用3D CNN分类,如下图所示。



我们用的是如下统一的一套模型架构,即3D Faster RCNN的RPN网络,没有后续的全连接做分类,也并没有

再在后面接一套3D CNN来做降假阳。能减少需要调节的网络参数。



该hard mining的过程,其实就是用上一层的模型作为下一层的输入,每一层的训练数据都选取比上一层更难分的。



这套架构,无需2套网络,只需要选择一套较深的网络。

根据我们的经验,采取层次化模型训练,第二层模型froc能比第一层效果提升0.05,第三层能比第二层提升0.02。

3.4 LOSS 函数的设计

在计算loss函数的时候,我们做了2点优化。

1.在使用hard mining的时候,每个batchsize里面负例的个数会明显多于正例。为了防止算loss的时候被负例主导。我们将loss函数分成3个部分,负例的loss,正例的loss和边框的loss。



2.在上一节提到的层次化hard mining,我们在最后一层训练模型的时候,会修改loss函数的计算,对于分错的负例和正例,做加权。这个思路和focal loss是很像的。



比如:

红框里面的部分,本来是负例,却以很大的概率被分成正例,这部分在算loss的时候权值就大些。红框外面的部分权值就小些。



4.本次比赛的关键点总结:

1) 解决了基于Intel extended Caffe的150多层深度网络的 3D Faster RCNN RPN网络收敛问题。

可以从2个方向来解决(线下Phi卡平台均已验证过)。

a)将 drop out设置为 0.1。缺点是会容易过拟合。

b)先训练一个crop size为32的模型

用这个模型做pre train model,训练crop size 64的模型

依次类推。

直到完成crop size为128的模型训练

由于时间关系,我们并未比较这2种思路的效果。比赛中使用的是第1个思路,收敛的更快些。

2) 提出层次化Hard Mining的训练框架。并没有采用常见的,unet做分割+3D CNN降假阳 或者 2d faster rcnn做检测+3D CNN降假阳的思路。我们只用了一套网络。减少了需要调节的网络参数。

3) 重新设计了loss函数,防止负例主导loss的计算, 并且在降低loss的过程中,更聚焦于分错的训练样本。

5. 经验总结:

我们团队虽然过往深度学习架构经验多,但对医学影像处理的know how属于尚在探索之中。所以,我们的优化思路,是用更多的计算资源,和更复杂的模型架构,来弥补没有专用模型网络积累的短板。在第一轮比赛时通过调用比较充足的计算资源时效果比较显著,但在第二轮限定计算资源的多CPU的框架上,比较受限于计算资源及时间。

在计算资源比较充沛的情况下,选取比较深的Resnet效果会明显。在资源受限的实际场合或者现实的生产环境,我们有两点启发:

  1. 学会认同重复造轮子的基础性工作。第一轮比赛我们是pytorch框架,第二轮按要求在caffe上实现,特别是在Intel Extended Caffe对3D支持有限,重写了不少很基础的模块,这种貌似重复造轮子的工作,对我们提出了更高的要求,但也锻炼了我们深入到框架底层的能力,从而对不同框架的性能特点有更深的认识,这种重写甚至还因此帮我们找到我们第一版pytorch代码里detect部分存在的一个bug。
  2. 根据资源灵活优化训练策略乃至模型。我们的3D Faster RCNN 初期在Extended Caffe 上过于耗时,但因为在计算资源充足环境下我们的做法比较有效,所以没有去考虑一些更快的检测算法,比如SSD、YOLO等,这点也算是路径依赖的教训了。

代码开源说明:

我们在GitHub (github.com/YiYuanIntell ) 开源了核心代码,特别是将我们基于Intel Extended Caffe的3D Faster RCNN RPN训练模块发布到社区,相信这也是业内首个Intel extended Caffe版的150层网络3D Faster RCNN开源,希望对Intel 的深度学习社区用户有帮助。

该代码对医学影像的处理也展示了有效性,相信对医学影像领域AI实践的发展,对技术如何造福大众,能起到一些帮助。

通过开源,希望有同行提出性能优化、功能扩充等的修改建议,互相促进。

宜远智能是一家专注于大健康领域的AI创新企业,团队由多名AI博士、来自腾讯的算法高手、医疗领域专家构成。目前提供医学影像图像分析平台及服务。还提供专业皮肤AI方案以及基于阿里云市场的测肤API平台。对我们的开源代码及相关医学影像处理有任何疑问、建议、合作与求职意向,可联系:

tkots_wu@sina.com JohnnyGambler

csshshi@comp.hkbu.edu.hk 施少怀

End.

url:https://zhuanlan.zhihu.com/p/29984844

这篇关于缺陷检测-如何用深度学习进行CT影像肺结节探测(附有基于Intel Extended Caffe的3D Faster RCNN代码开源)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/349339

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操