【OpenCV 例程 300篇】236. 特征提取之主成分分析(OpenCV)

2023-11-05 08:20

本文主要是介绍【OpenCV 例程 300篇】236. 特征提取之主成分分析(OpenCV),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

『youcans 的 OpenCV 例程200篇 - 总目录』

【youcans 的 OpenCV 例程 300篇】236. 特征提取之主成分分析(OpenCV)

文章目录

  • 【youcans 的 OpenCV 例程 300篇】236. 特征提取之主成分分析(OpenCV)
    • 5.2 主成分分析的数学方法
      • 5.4 OpenCV 的主成分分析方法
      • 例程 14.17:特征描述之主成分分析 (OpenCV)

特征提取是指从原始特征中通过数学变换得到一组新的特征,以降低特征维数,消除相关性,减少无用信息。

特征提取分为线性映射方法和非线性映射方法。


5.2 主成分分析的数学方法

主成分分析(Principal Components Analysis,PCA)是一种基于统计的数据降维方法,又称主元素分析、主分量分析。主成分分析只需要特征值分解,就可以对数据进行压缩、去噪,应用非常广泛。

众多原始变量之间往往具有一定的相关关系。这意味着相关变量所反映的信息有一定程度的重叠,因此可以用较少的综合指标聚合、反映众多原始变量所包含的全部信息或主要信息。主成分分析方法研究特征变量之间的相关性、相似性,将一组相关性高的高维变量转换为一组彼此独立、互不相关的低维变量,从而降低数据的维数。

主成分分析方法的思想是,将高维特征(p维)映射到低维空间(k维)上,新的低维特征是在原有的高维特征基础上通过线性组合而重构的,并具有相互正交的特性,称为主成分特性。

通过正交变换构造彼此正交的新的特征向量,这些特征向量组成了新的特征空间。将特征向量按特征值排序后,样本数据集中所包含的全部方差,大部分就包含在前几个特征向量中,其后的特征向量所含的方差很小。因此,可以只保留前 k个特征向量,而忽略其它的特征向量,实现对数据特征的降维处理。

主成分分析的基本步骤是:对原始数据归一化处理后求协方差矩阵,再对协方差矩阵求特征向量和特征值;对特征向量按特征值大小排序后,依次选取特征向量,直到选择的特征向量的方差占比满足要求为止。

主成分分析方法得到的主成分变量具有几个特点:(1)每个主成分变量都是原始变量的线性组合;(2)主成分的数目大大少于原始变量的数目;(3)主成分保留了原始变量的绝大多数信息;(4)各主成分变量之间彼此相互独立。

算法的基本流程如下:

(1)归一化处理,数据减去平均值;
(2)通过特征值分解,计算协方差矩阵;
(3)计算协方差矩阵的特征值和特征向量;
(4)将特征值从大到小排序;
(5)依次选取特征值最大的 k个特征向量作为主成分,直到其累计方差贡献率达到要求;
(6)将原始数据映射到选取的主成分空间,得到降维后的数据。

在图像处理中,把每幅二维图像拉伸为一维向量,即展平为一维数组。一组 m 幅图像就构造为一个 m 维向量,使用 Karhunen-Loève transform(KLT) 变换得到变换矩阵,选取特征值最大的 k个特征向量作为主成分,从而实现特征降维。

图像压缩过程是把一组原始图像变换成低维向量的过程,图像重建就是由低维向量变换重建图像组的过程。使用主成分分析进行图像压缩和重建会有少量信息损失,但可以把损失控制到很小。


5.4 OpenCV 的主成分分析方法

OpenCV 中提供了主成分分析(Principal Components Analysis,PCA)方法的实现,即 cv::PCA 类。类的声明在 include/opencv2/core.hpp 文件中,类的实现在 modules/core/src/pca.cpp 文件中。

  • 成员函数:
    • PCA::PCA:默认构造并初始化一个空的 PCA 结构
    • PCA::backproject:将数据从 PCA 空间投影回原始空间,重建原始数据
    • PCA::operator():对提供的数据执行主成分分析操作
    • PCA::project:将输入数据投影到 PCA 特征空间;
    • PCA::read:从指定文件读入特征值、特征向量和均值;
    • PCA::write:向指定文件写入特征值、特征向量和均值;
  • 属性:
    • PCA::eigenvalues:协方差矩阵的特征值
    • PCA::eigenvectors:协方差矩阵的特征向量
    • PCA::mean:均值,投影前减去均值,投影后加上均值

PCA 类使用 Karhunen-Loeve 变换,由协方差矩阵的特征向量计算得到一组向量的正交基。

在 Python 语言中,OpenCV 提供了 PCA 类的接口函数 cv.PCACompute()cv.PCAProject()cv.PCABackProject()

函数说明:

cv.PCACompute(data, mean[, eigenvectors=None, maxComponents=0]) → mean, eigenvectors
cv.PCACompute(data, mean, retainedVariance[, eigenvectors=None]) → mean, eigenvectors
cv.PCACompute2(data, mean[, eigenvectors=None, eigenvalues=None, maxComponents=0]) → mean, eigenvectors, eigenvalues
cv.PCACompute2(data, mean, retainedVariance[, eigenvectors=None, eigenvalues=None]) → mean, eigenvectors, eigenvaluescv.PCAProject(data, mean, eigenvectors[, result=None]) → result
cv.PCABackProject(data, mean, eigenvectors[, result=None]) → result

函数 cv.PCACompute 是 PCA::operator 的接口,用于对提供的数据执行主成分分析操作,返回均值、特征向量和特征值。

函数 **cv.PCAProject ** 是 PCA::project 的接口,用于将输入数据按选择的特征向量投影到 PCA 特征空间。

函数 cv.PCABackProject 是 PCA::backproject 的接口,用于将输入数据按选择的特征向量投影从 PCA 空间投影回原始空间,重建原始数据。

参数说明:

  • data:输入数据矩阵,对于 cv.PCACompute 和 PCAProject 是 m×P 原始数据矩阵,对于 PCABackProject 是 m×K 降维数据矩阵 ( K ≤ P ) (K \le P) (KP)

  • mean:均值,形状为 (1,P),如果该参数的输入为空,则通过输入数据计算均值

  • maxComponents:保留主成分的个数,默认为保留全部主成份

  • retainedVariance:保留的累计方差的百分比,据此确定保留主成分的个数(至少保留 2个主成分)

  • eigenvectors:特征向量,全部特征向量的形状为 (P,P),前 K 个特征向量的形状为 (K,P)

  • eigenvalues:特征值,全部特征向量的形状为 (P,1),前 K 个特征向量的形状为 (K,1)

注意事项:

注意事项:

  1. 输入参数中的 mean 如果为空,其格式为 np.empty((0)) 或 np.array([])。
  2. OpenCV-Python-PCA 是 C 语言版本 PCA 类的接口,有些变量/参数的格式有些不方便。网络上关于 OpenCV-Python-PCA 的很多博文(可能)也有问题(错误),请读者务必注意。

例程 14.17:特征描述之主成分分析 (OpenCV)

本例程的图像来自 R.C.Gonzalez 《数字图像处理(第四版)》P622 例11.16。本例的目的是说明如何使用主分量作为图像特征。

    # 14.17 特征描述之主成分分析 (OpenCV)# 读取光谱图像组img = cv2.imread("../images/Fig1138a.tif", flags=0)height, width = img.shape[:2]  # (564, 564)nBands = 6  # 光谱波段种类snBands = ['a','b','c','d','e','f']  # Fig1138a~fimgMulti = np.zeros((height, width, nBands))  # (564, 564, 6)Xmat = np.zeros((img.size, nBands))  # (318096, 6)print(imgMulti.shape, Xmat.shape)# 显示光谱图像组# fig1 = plt.figure(figsize=(9, 6))  # 原始图像,6 个不同波段# fig1.suptitle("Spectral image of multi bands by NASA")for i in range(nBands):path = "../images/Fig1138{}.tif".format(snBands[i])imgMulti[:,:,i] = cv2.imread(path, flags=0)  # 灰度图像#     ax1 = fig1.add_subplot(2,3,i+1)#     ax1.set_xticks([]), ax1.set_yticks([])#     ax1.imshow(imgMulti[:,:,i], 'gray')  # 绘制光谱图像 snBands[i]# plt.tight_layout()# 主成分分析 (principal component analysis)m, p = Xmat.shape  # m:训练集样本数量,p:特征维度数Xmat = np.reshape(imgMulti, (-1, nBands))  # (564,564,6) -> (318096,6)mean, eigenvectors, eigenvalues = cv2.PCACompute2(Xmat, np.empty((0)), retainedVariance=0.98)  # retainedVariance=0.95# mean, eigenvectors, eigenvalues = cv2.PCACompute2(Xmat, np.empty((0)), maxComponents=3)  maxComponents=3print(mean.shape, eigenvectors.shape, eigenvalues.shape)  # (1, 6) (3, 6) (3, 1)eigenvalues = np.squeeze(eigenvalues)  # 删除维度为1的数组维度,(3,1)->(3,)# 保留的主成分数量K = eigenvectors.shape[0]  # 主成分方差贡献率 95% 时的特征维数 K=3print("number of samples: m=", m)  # 样本集的样本数量 m=318096print("number of features: p=", p)  # 样本集的特征维数 p=6print("number of PCA features: k=", K)  # 降维后的特征维数,主成分个数 k=3print("mean:", mean.round(4))  # 均值print("topK eigenvalues:\n", eigenvalues.round(4))  # 特征值,从大到小print("topK eigenvectors:\n", eigenvectors.round(4))  # (3, 6)# 压缩图像特征,将输入数据按主成分特征向量投影到 PCA 特征空间mbMatPCA = cv2.PCAProject(Xmat, mean, eigenvectors)  # (318096, 6)->(318096, K=3)# 显示主成分变换图像fig2 = plt.figure(figsize=(9, 6))  # 主元素图像fig2.suptitle("Principal component images")for i in range(K):pca = mbMatPCA[:, i].reshape(-1, img.shape[1])  # 主元素图像 (564, 564)imgPCA = cv2.normalize(pca, (height, width), 0, 255,  cv2.NORM_MINMAX)ax2 = fig2.add_subplot(2,3,i+1)ax2.set_xticks([]), ax2.set_yticks([])ax2.imshow(imgPCA, 'gray')  # 绘制主成分图像plt.tight_layout()# # 由主成分分析重建图像reconMat = cv2.PCABackProject(mbMatPCA, mean, eigenvectors)  # (318096, K=3)->(318096, 6)fig3 = plt.figure(figsize=(9, 6))  # 重建图像,6 个不同波段fig3.suptitle("Rebuild images of multi bands by OpenCV")rebuild = np.zeros((height, width, nBands))  # (564, 564, 6)for i in range(nBands):rebuild = reconMat[:, i].reshape(-1, img.shape[1])   # 主元素图像 (564, 564)# rebuild = np.uint8(cv2.normalize(rebuild, (height, width), 0, 255,  cv2.NORM_MINMAX))ax3 = fig3.add_subplot(2,3,i+1)ax3.set_xticks([]), ax3.set_yticks([])ax3.imshow(rebuild, 'gray')  # 绘制光谱图像 snBands[i]plt.tight_layout()plt.show()

运行结果:

(564, 564, 6) (318096, 6)
(1, 6) (3, 6) (3, 1)
number of samples: m= 318096
number of features: p= 6
number of PCA features: k= 3
mean: [[ 61.9724 67.5084 62.1467 146.1866 134.4214 111.4343]]
topK eigenvalues:
[10344.2723 2965.8884 1400.6306]
topK eigenvectors:
[[ 0.489 0.4777 0.4899 -0.1375 0.2188 0.4753]
[-0.0124 0.0394 -0.022 0.7986 0.5981 -0.0486]
[-0.2301 -0.3012 -0.315 0.0431 0.0165 0.8689]]


在这里插入图片描述

在这里插入图片描述


【本节完】

版权声明:
本例程的图像来自 R.C.Gonzalez 《数字图像处理(第四版)》P622 例11.16。
youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/125782192)
Copyright 2022 youcans, XUPT
Crated:2022-7-15

234. 特征提取之主成分分析(PCA)
235. 特征提取之主成分分析(sklearn)
236. 特征提取之主成分分析(OpenCV)

这篇关于【OpenCV 例程 300篇】236. 特征提取之主成分分析(OpenCV)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/348564

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异