拓端tecdat|R语言信用风险回归模型中交互作用的分析及可视化

本文主要是介绍拓端tecdat|R语言信用风险回归模型中交互作用的分析及可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近我们被客户要求撰写关于信用风险回归模型研究报告,包括一些图形和统计输出。

视频:R语言生存分析Survival analysis原理与晚期肺癌患者分析案例

R语言生存分析Survival analysis原理与晚期肺癌患者分析案例

引言

多元统计分析 中,交互作用是指某因素作用随其他因素水平的不同而不同,两因素同时存在是的作用不等于两因素单独作用之和(相加交互作用)或之积(相乘交互作用)。通俗来讲就是,当两个或多个因素同时作用于一个结局时,就可能产生交互作用,又称为效应修饰作用(effect modification)。当两个因素同时存在时,所导致的效应(A)不等于它们单独效应相加(B+C)时,则称因素之间存在交互作用。当A=B+C时称不存在交互效应;当A>B+C时称存在正交互作用,又称协同作用(Synergy)。
在一个回归模型中,我们想写的是

当我们限制为线性模型时,我们写

或者

但是我们怀疑是否缺少某些因素……比如,我们错过所有可能的交互影响。我们可以交互变量,并假设

可以进一步扩展,达到3阶

甚至更多。

假设我们的变量  在这里是定性的,更确切地说是二元的。

信贷数据

让我们举一个简单的例子,使用信贷数据集。

Credit数据是根据个人的银行贷款信息和申请客户贷款逾期发生情况来预测贷款违约倾向的数据集,数据集包含24个维度的,1000条数据。

该数据集将通过一组属性描述的人员分类为良好或不良信用风险。
数据集将通过一组属性描述的人员分类为良好或不良信用风险。

建立模型

我们读取数据

db=Credit

我们从三个解释变量开始,


reg=glm(Y~X1+X2+X3,data=db,family=binomial)
summary(reg)

没有交互的回归长这样

这里有几种可能的交互作用(限制为成对的)。进行回归时观察到:

交互关系可视化

我们可以画一幅图来可视化交互:我们有三个顶点(我们的三个变量),并且可视化了交互关系


plot(sommetX,sommetY,cex=1,axes=FALSE,xlab="",ylab="",for(i in 1:nrow(indices)){
segments(sommetX[indices[i,2]],sommetY[indices[i,2]],
text(mean(sommetX[indices[i,2:3]]),mean(sommetY[indices[i,2:3]]),
}text(sommetX,sommetY,1:k)

这给出了我们的三个变量

这个模型似乎是不完整的,因为我们仅成对地看待变量之间的相互作用。实际上,这是因为(在视觉上)缺少未交互的变量。我们可以根据需要添加它们


reg=glm(Y~X1+X2+X3+X1:X2+X1:X3+X2:X3,data=db,family=binomial)
k=3
theta=pi/2+2*pi*(0:(k-1))/k
plot(X,Y
for(i in 1:nrow(indices)){
segments(X[indices[i,2]],Y[indices[i,2]],
for(i in 1:k){
cercle(c(cos(theta)[i]*1.18,sin(theta)[i]*1.18),.18)
text(cos(theta)[i]*1.35,sin(theta)[i]*1.35,
points(X,Y,cex=6,pch=1)

这里得到

如果我们更改变量的“含义”(通过重新编码,通过排列真值和假值),将获得下图


glm(Y~X1+X2+X3+X1:X2+X1:X3+X2:X3,data=dbinv,family=binomial)
plot(sommetX,sommetY,cex=1
for(i in 1:nrow(indices)){
segments(sommetX[indices[i,2]]
for(i in 1:k){
cercle(c(cos(theta)[i]*1.18,sin(theta)[i]*1.18)points(sommetX,sommetY,cex=6,pch=19)

然后可以将其与上一张图进行比较

使用5个变量,我们增加了可能的交互作用。

然后,我们修改前面的代码


formule="Y~1"
for(i in 1:k) formule=paste(formule,"+X",i,sep="")
for(i in 1:nrow(indices)) formule=paste(formule,"+X",indices[i,2],":X",indices[i,3],sep="")
reg=glm(formule,data=db,family=binomial)
plot(sommetX,sommetY,cex=1
for(i in 1:nrow(indices)){
segments(sommetX[indices[i,2]],sommetY[indices[i,2]],
for(i in 1:k){
cercle(c(cos(theta)[i]*1.18,sin(theta)[i]*1.18)
points(sommetX,sommetY,cex=6

给出了更复杂的图,

我们也可以只采用2个变量,分别取3和4种指标。为第一个提取两个指标变量(其余形式为参考形式),为第二个提取三个指标变量,

formule="Y~1"
for(i in 1:k) formule=paste(formule,"+X",i,sep="")
for(i in 1:nrow(indices)formule=paste(formule,"+X",indices[i,2],":X",indices[i,3],sep="")
reg=glm(formule,data=db,family=binomial)
for(i in 1:nrow(indices){
if(!is.na(coefficients(reg)[1+k+i])){
segments(X[indices[i,2]],Y[indices[i,2]],
}
for(i in 1:k){
cercle(c(cos(theta)[i]*1.18,sin(theta)[i]*1.18),.18)
text(cos(theta)[i]*1.35,sin(theta)[i]*1.35,
}

我们看到,在左边的部分(相同变量的三种指标)和右边的部分不再有可能发生交互作用。

我们还可以通过仅可视化显著交互来简化图形。


for(i in 1:nrow(indices)){
if(!is.na(coefficients(reg)[1+k+i])){
if(summary(reg)$coefficients[1+k+i,4]<.1){

在这里,只有一个交互作用是显著的,几乎所有的变量都是显著的。如果我们用5个因子重新建立模型,


for(i in 1:nrow(indices))
formule=paste(formule,"+X",indices[i,2],":X",indices[i,3],sep="")
reg=glm(formule,data=db,family=binomial)for(i in 1:nrow(indices){
if(!is.na(coefficients(reg)[1+k+i])){
if(summary(reg)$coefficients[1+k+i,4]<.1){

我们得到


这篇关于拓端tecdat|R语言信用风险回归模型中交互作用的分析及可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/348482

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应