Multi-Aspect Explainable Inductive Relation Prediction by Sentence Transformer

本文主要是介绍Multi-Aspect Explainable Inductive Relation Prediction by Sentence Transformer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要

最近关于知识图(KGs)的研究表明,通过预先训练的语言模型授权的基于路径的方法在提供归纳和可解释的关系预测方面表现良好。本文引入关系路径覆盖率和关系路径置信度的概念,在模型训练前过滤掉不可靠的路径,以提高模型的性能。此外,我们提出了知识推理句子转换器(Knowledge Reasoning Sentence Transformer, KRST)来预测KGs中的归纳关系,KRST将提取的可靠路径编码在KGs中,使我们能够适当地聚类路径并提供多方面的解释。我们在三个真实世界的数据集上进行了广泛的实验。实验结果表明,与SOTA模型相比,KRST在大多数传导和感应测试用例(6个中的4个)和12个少射测试用例中的11个中都达到了最佳性能。

1.介绍

知识图(knowledge graph, KG)作为问答和推荐系统提供侧信息的重要工具(Ji et al 2021)得到了广泛的研究。KG通常用三元组G = {(hi, ri, ti)|i = 1,2,3,…, m},其中包含实体hi, ti∈EG和关系ri∈RG。由于知识图谱在实际应用中的不完全性,需要利用知识图谱补全技术来提高知识图谱的质量,其中关系预测是知识图谱补全的重要任务之一。给定目标三元组(h, r, t),通常通过屏蔽给定三元组中的实体h或t,并让模型基于另一个实体和关系类型预测被屏蔽的实体来设置关系预测查询。

基于嵌入的方法可能是最常用的SOTA模型。使用一组固定的实体和关系,基于嵌入的方法在KGC

这篇关于Multi-Aspect Explainable Inductive Relation Prediction by Sentence Transformer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/347072

相关文章

2014 Multi-University Training Contest 8小记

1002 计算几何 最大的速度才可能拥有无限的面积。 最大的速度的点 求凸包, 凸包上的点( 注意不是端点 ) 才拥有无限的面积 注意 :  凸包上如果有重点则不满足。 另外最大的速度为0也不行的。 int cmp(double x){if(fabs(x) < 1e-8) return 0 ;if(x > 0) return 1 ;return -1 ;}struct poin

2014 Multi-University Training Contest 7小记

1003   数学 , 先暴力再解方程。 在b进制下是个2 , 3 位数的 大概是10000进制以上 。这部分解方程 2-10000 直接暴力 typedef long long LL ;LL n ;int ok(int b){LL m = n ;int c ;while(m){c = m % b ;if(c == 3 || c == 4 || c == 5 ||

2014 Multi-University Training Contest 6小记

1003  贪心 对于111...10....000 这样的序列,  a 为1的个数,b为0的个数,易得当 x= a / (a + b) 时 f最小。 讲串分成若干段  1..10..0   ,  1..10..0 ,  要满足x非递减 。  对于 xi > xi+1  这样的合并 即可。 const int maxn = 100008 ;struct Node{int

智能工厂程序设计 之1 智能工厂都本俱的方面(Facet,Aspect和Respect)即智能依赖的基底Substrate 之1

Q1、昨天分别给出了三个智能工厂的 “面face”(里面inter-face,外面outer-face和表面surface) 以及每个“面face” 各自使用的“方”(StringProcessor,CaseFilter和ModeAdapter)  。今天我们将继续说说三个智能工厂的“方面” 。在展开之前先看一下三个单词:面向facing,取向oriented,朝向toword。理解这三个词 和

Redis缓存 自定义注解+aspect+反射技术实现

最近再给云随笔后台增加redis模块,突然发现spring-boot-starter-data-redis模块很不人性化,实现不了通用的方式,(当然,你也可以自己写个通用的CacheUtil来实现通用的方式),但由于本人非常的爱装逼,就在这里不讲解那种傻瓜式操作了,这里只讲干货,干到你不可置信的干货). 例如:这里我使用了它其中的RedisTemplate ,发现存到redis中后,数据

Transformer从零详细解读

Transformer从零详细解读 一、从全局角度概况Transformer ​ 我们把TRM想象为一个黑盒,我们的任务是一个翻译任务,那么我们的输入是中文的“我爱你”,输入经过TRM得到的结果为英文的“I LOVE YOU” ​ 接下来我们对TRM进行细化,我们将TRM分为两个部分,分别为Encoders(编码器)和Decoders(解码器) ​ 在此基础上我们再进一步细化TRM的

LLM模型:代码讲解Transformer运行原理

视频讲解、获取源码:LLM模型:代码讲解Transformer运行原理(1)_哔哩哔哩_bilibili 1 训练保存模型文件 2 模型推理 3 推理代码 import torchimport tiktokenfrom wutenglan_model import WutenglanModelimport pyttsx3# 设置设备为CUDA(如果可用),否则使用CPU#

逐行讲解Transformer的代码实现和原理讲解:计算交叉熵损失

LLM模型:Transformer代码实现和原理讲解:前馈神经网络_哔哩哔哩_bilibili 1 计算交叉熵目的 计算 loss = F.cross_entropy(input=linear_predictions_reshaped, target=targets_reshaped) 的目的是为了评估模型预测结果与实际标签之间的差距,并提供一个量化指标,用于指导模型的训练过程。具体来说,交叉

深度学习每周学习总结N9:transformer复现

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 目录 多头注意力机制前馈传播位置编码编码层解码层Transformer模型构建使用示例 本文为TR3学习打卡,为了保证记录顺序我这里写为N9 总结: 之前有学习过文本预处理的环节,对文本处理的主要方式有以下三种: 1:词袋模型(one-hot编码) 2:TF-I

RNN发展(RNN/LSTM/GRU/GNMT/transformer/RWKV)

RNN到GRU参考: https://blog.csdn.net/weixin_36378508/article/details/115101779 tRANSFORMERS参考: seq2seq到attention到transformer理解 GNMT 2016年9月 谷歌,基于神经网络的翻译系统(GNMT),并宣称GNMT在多个主要语言对的翻译中将翻译误差降低了55%-85%以上, G