【单目标优化算法】蜣螂优化算法(Dung beetle optimizer,DBO)(Matlab代码实现)

本文主要是介绍【单目标优化算法】蜣螂优化算法(Dung beetle optimizer,DBO)(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码实现

💥1 概述

本文提出了一种新的基于种群的技术,称为粪甲虫优化器(DBO)算法,其灵感来自于粪甲虫的滚球、跳舞、觅食、偷窃和繁殖行为。新提出的DBO算法同时考虑了全局探索和局部开发,从而具有快速收敛速度和令人满意的解精度的特点。使用一系列众所周知的数学测试函数(包括23个基准函数和29个CEC-BC-2017测试函数)来评估DBO算法的搜索能力。从仿真结果中可以观察到,DBO算法在收敛速度、解的精度和稳定性方面与最先进的优化方法相比具有实质上的竞争性能。

详细文章讲解见第四部分。

📚2 运行结果

 部分代码:

function [fMin , bestX, Convergence_curve ] = DBO(pop, M,c,d,dim,fobj  )
        
   P_percent = 0.2;    % The population size of producers accounts for "P_percent" percent of the total population size       


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pNum = round( pop *  P_percent );    % The population size of the producers   


lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : pop
    
    x( i, : ) = lb + (ub - lb) .* rand( 1, dim );  
    fit( i ) = fobj( x( i, : ) ) ;                       
end

pFit = fit;                       
pX = x; 
 XX=pX;    
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin

 % Start updating the solutions.
for t = 1 : M    
       
        [fmax,B]=max(fit);
        worse= x(B,:);   
       r2=rand(1);
 
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for i = 1 : pNum    
        if(r2<0.9)
            r1=rand(1);
          a=rand(1,1);
          if (a>0.1)
           a=1;
          else
           a=-1;
          end
    x( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)
       else
            
           aaa= randperm(180,1);
           if ( aaa==0 ||aaa==90 ||aaa==180 )
            x(  i , : ) = pX(  i , :);   
           end
         theta= aaa*pi/180;   
       
       x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      

        end
      
        x(  i , : ) = Bounds( x(i , : ), lb, ub );    
        fit(  i  ) = fobj( x(i , : ) );
    end 
 [ fMMin, bestII ] = min( fit );      % fMin denotes the current optimum fitness value
  bestXX = x( bestII, : );             % bestXX denotes the current optimum position 

 R=1-t/M;                           %
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 Xnew1 = bestXX.*(1-R); 
     Xnew2 =bestXX.*(1+R);                    %%% Equation (3)
   Xnew1= Bounds( Xnew1, lb, ub );
   Xnew2 = Bounds( Xnew2, lb, ub );
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     Xnew11 = bestX.*(1-R); 
     Xnew22 =bestX.*(1+R);                     %%% Equation (5)
   Xnew11= Bounds( Xnew11, lb, ub );
    Xnew22 = Bounds( Xnew22, lb, ub );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
    for i = ( pNum + 1 ) :12                  % Equation (4)
     x( i, : )=bestXX+((rand(1,dim)).*(pX( i , : )-Xnew1)+(rand(1,dim)).*(pX( i , : )-Xnew2));
   x(i, : ) = Bounds( x(i, : ), Xnew1, Xnew2 );
  fit(i ) = fobj(  x(i,:) ) ;
   end
   
  for i = 13: 19                  % Equation (6)

   
        x( i, : )=pX( i , : )+((randn(1)).*(pX( i , : )-Xnew11)+((rand(1,dim)).*(pX( i , : )-Xnew22)));
       x(i, : ) = Bounds( x(i, : ),lb, ub);
       fit(i ) = fobj(  x(i,:) ) ;
  
  end
  
  for j = 20 : pop                 % Equation (7)
       x( j,: )=bestX+randn(1,dim).*((abs(( pX(j,:  )-bestXX)))+(abs(( pX(j,:  )-bestX))))./2;
      x(j, : ) = Bounds( x(j, : ), lb, ub );
      fit(j ) = fobj(  x(j,:) ) ;
  end
   % Update the individual's best fitness vlaue and the global best fitness value
     XX=pX;
    for i = 1 : pop 
        if ( fit( i ) < pFit( i ) )
            pFit( i ) = fit( i );
            pX( i, : ) = x( i, : );
        end
        
        if( pFit( i ) < fMin )
           % fMin= pFit( i );
           fMin= pFit( i );
            bestX = pX( i, : );
          %  a(i)=fMin;
            
        end
    end
  
     Convergence_curve(t)=fMin;
  
    
  
end

% Application of simple limits/bounds
function s = Bounds( s, Lb, Ub)
  % Apply the lower bound vector
  temp = s;
  I = temp < Lb;
  temp(I) = Lb(I);
  
  % Apply the upper bound vector 
  J = temp > Ub;
  temp(J) = Ub(J);
  % Update this new move 
  s = temp;
function S = Boundss( SS, LLb, UUb)
  % Apply the lower bound vector
  temp = SS;
  I = temp < LLb;
  temp(I) = LLb(I);
  
  % Apply the upper bound vector 
  J = temp > UUb;
  temp(J) = UUb(J);
  % Update this new move 
  S = temp;
%---------------------------------------------------------------------------------------------------------------------------
 

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码实现

这篇关于【单目标优化算法】蜣螂优化算法(Dung beetle optimizer,DBO)(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/342000

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭