LCR 166.珠宝的最高价值 + 动态规划 + 记忆化搜索 + 递推 + 空间优化

本文主要是介绍LCR 166.珠宝的最高价值 + 动态规划 + 记忆化搜索 + 递推 + 空间优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LCR 166. 珠宝的最高价值 - 力扣(LeetCode)


现有一个记作二维矩阵 frame 的珠宝架,其中 frame[i][j] 为该位置珠宝的价值。拿取珠宝的规则为:

  • 只能从架子的左上角开始拿珠宝
  • 每次可以移动到右侧或下侧的相邻位置
  • 到达珠宝架子的右下角时,停止拿取

 注意:珠宝的价值都是大于 0 的。除非这个架子上没有任何珠宝,比如 frame = [[0]]


(1)递归

定义:dfs(i,j) 表示从左上角 到 (i,j) 最大价值和

寻找子问题,把大问题变成小问题,分类讨论如何到达(i,j):

  • 若从左边过来,则 dfs(i,j) = dfs(i,j-1)+grid[i][j];
  • 若从上边过来,则 dfs(i,j) = dfs(i-1,j)+grid[i][j];

取这两个分类情况的最大值dfs(i,j) = max(dfs(i,j-1),dfs(i-1,j))+grid[i][j];

  • 递归边界:当 i < 0j < 0 时,返回 0,因为出界没有价值的,也就是        
    • dfs(-1,j)=0,dfs(i,-1)=0
  • 递归入口:
    • dfs(m-1,n-1)
class Solution {
public:// 递归 超时!!!int jewelleryValue(vector<vector<int>>& grid) {  int n=grid.size(),m=grid[0].size();function<int(int,int)> dfs = [&](int i,int j) -> int{if(i<0 || j<0) return 0;return max(dfs(i-1,j),dfs(i,j-1))+grid[i][j];};return dfs(n-1,m-1);}
};
  • 时间复杂度O(2^{n+m})
  • 空间复杂度O(n+m)

>>复杂度分析

  • 其中 n 和 分别为 grid 的行数和列数。搜索树可以近似为一棵二叉树,树高为O(n+m)。也意味着从 grid 左上角到右下角经过的格子数,所以节点个数为O(2^{n+m})
  • 递归需要 O(n+m) 的栈空间

(2)递归搜索 + 保存计算结果 = 记忆化搜索

  • 对于dfs(3,3)「先左再上」「先上再左」,都会调用 dfs(2,2)。同理,那么整个递归中有大量重复递归调用(递归入参相同)
  • 因为递归函数无副作用,同样的入参无论计算多少次,都是一样的结果,可用记忆化搜索来优化

>>注意事项

  • 如果 grid 中有 0memo 数组初始化成 -1
  • 如果 grid 中有负数memo 数组可以初始化成很大或者很小的数,如:INT_MAX,INT_MIN
class Solution {
public:// 记忆化搜索int jewelleryValue(vector<vector<int>>& grid) {  int n=grid.size(),m=grid[0].size(),memo[n][m];// vector<vector<int>> memo(n+1,vector<int>(m+1,-1));memset(memo,0,sizeof(memo));function<int(int,int)> dfs = [&](int i,int j) -> int{if(i<0 || j<0) return 0;int &res = memo[i][j];if(res) return res;// grid[i][j] 都是正数,记忆化的 memo[i][j] 必然为正数return res=max(dfs(i-1,j),dfs(i,j-1))+grid[i][j];};return dfs(n-1,m-1);}
};
class Solution {
public:// 记忆化搜索int jewelleryValue(vector<vector<int>>& grid) {  int n=grid.size(),m=grid[0].size(),memo[n+1][m+1];// vector<vector<int>> memo(n+1,vector<int>(m+1,-1));memset(memo, -1, sizeof(memo));function<int(int,int)> dfs = [&](int i,int j) -> int{if(i<0 || j<0) return 0;int &res = memo[i][j];if(res != -1) return res;return res=max(dfs(i-1,j),dfs(i,j-1))+grid[i][j];};return dfs(n-1,m-1);}
};
  • 时间复杂度O(nm)
  • 空间复杂度O(nm)

>>复杂度分析

由于每个状态只会计算一次,状态个数为O(nm),单个状态的计算时间为O(1),所以

  • 动态规划的时间复杂度 = 状态个数 x 单个状态的计算时间
  • O(nm) = O(nm) x O(1) 

(3)1:1 翻译成递推

  • 去掉递归中的「递」,只保留「归」的部分,即自底向上计算

翻译步骤:

  • dfs 改成 f 数组
  • 递归改成循环 (每个参数都对应一层循环)
  • 递归边界改成 f 数组的初始值

  • dfs(i,j) = max(dfs(i,j-1),dfs(i-1,j))+grid[i][j];

                                           

  • f[i][j] = max(f[i][j-1],f[i-1][j])+grid[i][j];

存在问题(O_O)?:当 i = 0,j = 0 时,这种定义方式没有状态能表示边界出界的情况

解决方案:在 f 数组的上边和左边各加一排,

  • f[i] -> f[i+1],f[i-1] -> f[i],f[j] -> f[j+1],f[j-1] -> f[j]
  • f[i+1][j+1] = max(f[i+1][j],f[i][j+1])+grid[i][j];

初始化:根据  dfs(i,-1) = 0dfs(-1,j) = 0 翻译f[i][0]=0,f[0][j]=0

返回最终结果:根据 dfs(m-1,n-1) 翻译 f[m][n] 


  •  ① f[i+1][j+1] = max(f[i+1][j],f[i][j+1])+grid[i][j]; (推荐)
class Solution {
public: // 递推int jewelleryValue(vector<vector<int>>& grid) {  int n=grid.size(),m=grid[0].size(),f[n+1][m+1];// vector<vector<int>> f(n+1,vector<int>(m+1,0));memset(f,0,sizeof(f));for(int i=0;i<n;i++) {for(int j=0;j<m;j++) {f[i+1][j+1] = max(f[i][j+1],f[i+1][j])+grid[i][j];}}return f[n][m];}
};
  •  ② f[i][j] = max(f[i][j-1],f[i-1][j])+grid[i][j];
class Solution {
public:// 递推int jewelleryValue(vector<vector<int>>& grid) {  int n=grid.size(),m=grid[0].size();vector<vector<int>> f(n,vector<int>(m,0));f[0][0]=grid[0][0];for(int i=0;i<n;i++) {for(int j=0;j<m;j++) {if(i==0 && j>=1) f[0][j] = f[0][j-1] + grid[0][j];if(j==0 && i>=1) f[i][0] = f[i-1][0] + grid[i][0];if(i>=1 && j>=1) f[i][j] = max(f[i-1][j],f[i][j-1])+grid[i][j];}}return f[n-1][m-1];}
};
  • 时间复杂度O(nm)
  • 空间复杂度O(nm)

(4)空间优化

  • 方法一:两个数组,滚动数组
class Solution {
public: // 递推 + 空间优化int jewelleryValue(vector<vector<int>>& grid) {  int n=grid.size(),m=grid[0].size(),f[2][m+1];// vector<vector<int>> f(2,vector<int>(m+1,0));memset(f,0,sizeof(f));for(int i=0;i<n;i++) {for(int j=0;j<m;j++) {f[(i+1)%2][j+1] = max(f[i%2][j+1],f[(i+1)%2][j])+grid[i][j];}}return f[n%2][m];}
};
  • 时间复杂度O(nm)
  • 空间复杂度O(m)

  • 方法二:一个数组,滚动数组

 本题的转移方程类似完全背包,故采用正序遍历

class Solution {
public:// 递推 + 空间优化int jewelleryValue(vector<vector<int>>& grid) {  int n=grid.size(),m=grid[0].size(),f[m+1];// vector<int>f(m+1,0);memset(f,0,sizeof(f));for(int i=0;i<n;i++) {for(int j=0;j<m;j++) {f[j+1] = max(f[j+1],f[j])+grid[i][j];}}return f[m];}
};
  • 时间复杂度O(nm)
  • 空间复杂度O(m)

  • 方法三:原地修改
class Solution {
public:// 递推 + 空间优化 + 原地修改int jewelleryValue(vector<vector<int>>& frame) {  int n=frame.size(),m=frame[0].size();for(int i=0;i<n;i++) {for(int j=0;j<m;j++) {if(i==0 && j>=1) frame[0][j] = frame[0][j-1] + frame[0][j] ;if(j==0 && i>=1) frame[i][0] = frame[i-1][0] + frame[i][0];if(i>=1 && j>=1) frame[i][j] = max(frame[i-1][j],frame[i][j-1])+frame[i][j];}}return frame[n-1][m-1];}
};
  • 时间复杂度O(nm)
  • 空间复杂度O(1)

 参考和推荐文章:

LCR 166. 珠宝的最高价值 - 力扣(LeetCode)icon-default.png?t=N7T8https://leetcode.cn/problems/li-wu-de-zui-da-jie-zhi-lcof/solutions/2153802/jiao-ni-yi-bu-bu-si-kao-dpcong-hui-su-da-epvl/

这篇关于LCR 166.珠宝的最高价值 + 动态规划 + 记忆化搜索 + 递推 + 空间优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/341814

相关文章

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

MySQL启动报错:InnoDB表空间丢失问题及解决方法

《MySQL启动报错:InnoDB表空间丢失问题及解决方法》在启动MySQL时,遇到了InnoDB:Tablespace5975wasnotfound,该错误表明MySQL在启动过程中无法找到指定的s... 目录mysql 启动报错:InnoDB 表空间丢失问题及解决方法错误分析解决方案1. 启用 inno

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查