Zephyr-7B-β :类GPT的高速推理LLM

2023-11-03 11:20
文章标签 llm 推理 gpt 高速 zephyr 7b

本文主要是介绍Zephyr-7B-β :类GPT的高速推理LLM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Zephyr 是一系列语言模型,经过训练可以充当有用的助手。 Zephyr-7B-β 是该系列中的第二个模型,是 Mistralai/Mistral-7B-v0.1 的微调版本,使用直接偏好优化 (DPO) 在公开可用的合成数据集上进行训练 。 我们发现,删除这些数据集的内置对齐可以提高 MT Bench 的性能,并使模型更加有用。 然而,这意味着该模型在提示时可能会生成有问题的文本,并且只能用于教育和研究目的。 你可以在技术报告中找到更多详细信息。
在这里插入图片描述

在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D场景编辑器

1、Zephyr-7B-β 模型说明

  • 模型类型:7B 参数类似 GPT 的模型,在公开可用的合成数据集上进行微调。
  • 语言 (NLP):主要是英语
  • 许可证:MIT
  • 微调原模型:mistralai/Mistral-7B-v0.1

模型源码如下:

  • 存储库:github
  • 演示:zephyr-chat
  • Chatbot竞赛:在 LMSYS 竞技场中针对 10 多个 LLM 评估 Zephyr 7B

2、Zephyr-7B-β 性能

在发布时,Zephyr-7B-β 是 MT-Bench 和 AlpacaEval 基准上排名最高的 7B 聊天模型

模型大小对齐MT-Bench(分数)AlpacaEval(胜率 %)
StableLM-Tuned-α7BdSFT2.75-
MPT-Chat7BdSFT5.42-
Xwin-LMv0.17BdPPO6.1987.83
Mistra-Instructv0.17B-6.84-
Zephyr-7b-α7BdDPO6.88-
Zephyr-7b-β 🪁7BdDPO7.3490.60
Falcon-Instruct40BdSFT5.1745.71
Guanaco65BSFT6.4171.80
Llama2-Chat70BRLHF6.8692.66
Vicuna v1.333BdSFT7.1288.99
WizardLM v1.070BdSFT7.71-
Xwin-LM v0.170BdPPO-95.57
GPT-3.5-turbo-RLHF7.9489.37
Claude 2-RLHF8.0691.36
GPT-4-RLHF8.9995.28

特别是,在 MT-Bench 的多个类别上,与 Llama2-Chat-70B 等较大的开放模型相比,Zephyr-7B-β 具有较强的性能:
在这里插入图片描述

然而,在编码和数学等更复杂的任务上,Zephyr-7B-β 落后于专有模型,需要更多的研究来缩小差距。

3、Zephyr-7B-β 预期用途和限制

该模型最初是在经过过滤和预处理的 UltraChat 数据集上进行微调的,该数据集包含 ChatGPT 生成的各种合成对话。 然后,我们在 openbmb/UltraFeedback 数据集上进一步将模型与 🤗 TRL 的 DPOTrainer 对齐,该数据集包含按 GPT-4 排名的 64k 提示和模型完成情况。 因此,该模型可以用于聊天,你可以查看我们的演示来测试其功能。

可以在此处找到用于训练 Zephyr-7B-β 的数据集

以下是使用 🤗 Transformers 中的 pipeline() 函数运行模型的方法:

# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerateimport torch
from transformers import pipelinepipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [{"role": "system","content": "You are a friendly chatbot who always responds in the style of a pirate",},{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!

4、Zephry-7B-β 的偏见、风险和局限性

Zephyr-7B-β 尚未通过 RLHF 等技术与人类偏好保持一致,也未通过 ChatGPT 等响应的循环过滤进行部署,因此该模型可能会产生有问题的输出(尤其是在提示时)。 目前还不清楚用于训练基本模型 (mistralai/Mistral-7B-v0.1) 的语料库的大小和组成,但它很可能包含 Web 数据和书籍和代码等技术资源的组合 。 有关示例,请参阅 Falcon 180B 模型卡。


原文链接:Zephyr-7B-β — BimAnt

这篇关于Zephyr-7B-β :类GPT的高速推理LLM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/337824

相关文章

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

LLM系列 | 38:解读阿里开源语音多模态模型Qwen2-Audio

引言 模型概述 模型架构 训练方法 性能评估 实战演示 总结 引言 金山挂月窥禅径,沙鸟听经恋法门。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小男孩,今天这篇小作文主要是介绍阿里巴巴的语音多模态大模型Qwen2-Audio。近日,阿里巴巴Qwen团队发布了最新的大规模音频-语言模型Qwen2-Audio及其技术报告。该模型在音频理解和多模态交互

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

PyInstaller问题解决 onnxruntime-gpu 使用GPU和CUDA加速模型推理

前言 在模型推理时,需要使用GPU加速,相关的CUDA和CUDNN安装好后,通过onnxruntime-gpu实现。 直接运行python程序是正常使用GPU的,如果使用PyInstaller将.py文件打包为.exe,发现只能使用CPU推理了。 本文分析这个问题和提供解决方案,供大家参考。 问题分析——找不到ONNX Runtime GPU 动态库 首先直接运行python程序

MiniCPM-V: A GPT-4V Level MLLM on Your Phone

MiniCPM-V: A GPT-4V Level MLLM on Your Phone 研究背景和动机 现有的MLLM通常需要大量的参数和计算资源,限制了其在实际应用中的范围。大部分MLLM需要部署在高性能云服务器上,这种高成本和高能耗的特点,阻碍了其在移动设备、离线和隐私保护场景中的应用。 文章主要贡献: 提出了MiniCPM-V系列模型,能在移动端设备上部署的MLLM。 性能优越:

LLM应用实战: 产业治理多标签分类

数据介绍 标签体系 产业治理方面的标签体系共计200+个,每个标签共有4个层级,且第3、4层级有标签含义的概括信息。 原始数据 企业官网介绍数据,包括基本介绍、主要产品等 企业专利数据,包括专利名称和专利摘要信息,且专利的数据量大。 LLM选型 经调研,采用Qwen2-72B-Instruct-GPTQ-Int4量化版本,占用显存更少,且效果与非量化相当,

OpenAI澄清:“GPT Next”不是新模型。

不,”GPT Next” 并不是OpenAI的下一个重要项目。 本周早些时候,OpenAI 日本业务的负责人长崎忠男在日本 KDDI 峰会上分享了一场演讲,似乎在暗示一个名为 “GPT Next” 的新模型即将出现。 但OpenAI的一位发言人已向Mashable证实,幻灯片中用引号括起来的”GPT Next”一词只是一个假设性占位符,旨在表明OpenAI的模型如何随着时间呈指数级进化。发言人

AI跟踪报道第55期-新加坡内哥谈技术-本周AI新闻: GPT NEXT (x100倍)即将在2024推出

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/ 点击下面视频观看在B站本周AI更新: B 站 链接 观看: 本周AI