Vicarious发表Science论文:概率生成模型超越神经网络

本文主要是介绍Vicarious发表Science论文:概率生成模型超越神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当前人工智能的兴起主要基于深度学习的发展,但是这种方法并不能让计算机像人类一样通过学习少量样本就能将知识泛化到很多种问题中去,这也意味着系统应用范围受限。最近,知名人工智能创业公司 Vicarious 在 Science 上发表的研究提出了一种全新概率生成模型。新的模型具有识别、分割和推理能力,在场景文字识别等任务上超过了深度神经网络。研究人员称,这种方法或许会将我们带向通用人工智能。


论文:A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs




论文链接:http://science.sciencemag.org/content/early/2017/10/25/science.aag2612


摘要:从少数样本学习并泛化至截然不同的情况是人类视觉智能所拥有的能力,这种能力尚未被先进的机器学习模型所学习到。通过系统神经科学的启示,我们引入了视觉的概率生成模型,其中基于消息传送(message-passing)的推断以统一的方式处理识别、分割和推理(Reasoning)。该模型表现出优秀的泛化和遮挡推理(occlusion-reasoning)能力,并在困难的场景文字识别基准任务上优于深度神经网络,且更具有 300 倍的数据效率(data efficient)优势。此外,该模型基本上打破了现代基于文本的验证码生成方案,即在没有具体验证码的启发式方法下分割目标。我们的模型在通向通用人工智能的路上可能是非常重要的,因为它强调了数据效率和语意合成性等特性。



图 1:人类在字母形式感知上的灵活性。(A)人类擅长解析不熟悉的验证码。(B)相同的字母可以有非常多的表现形式,上图都是「A」。(C)对形状的感知可以有助于将其解析为相近的目标。



图 2:RCN(Recursive Cortical Network)的结构。


上图(A)层级结构生成对象的轮廓,条件随机场(CRF)生成表面外观。(B)轮廓层级相同的两个子网络通过复制特定父结点的子结点特征并连接它们到该父结点的旁边分支(laterals)而保持独立的分支连接。图中绿色矩形的结点是特征「e」的复制。(C)表征正方形轮廓的三级 RCN,第二级特征表征着四个角,而每个角都使用四个线段的连接表示。(D)表征字母「A」的四级网络。



图 4:传播与特征学习的过程。


上图(A)中的 i 为前向传播(包括了侧面传播),生成多个字母的假设展示在输入图像中。PreProc 是一组类 Gabor 的滤波器,可以将像素转化为边缘似然度。ii 为后向传播和侧面传播(lateral propagation)创建的分割掩码,它可用来挑选前向传播的假设,上图掩码为「A」。iii 是错误的假设「V」正好拟合「A」和「K」的交叉点,错误的假设需要通过解析来解决。(iv)可以激活多个假设以产生联合解释来避免字母遮挡情况。(B)第二级特征上学习各种特征。彩色的圆圈表示特征激活,虚线圆圈表示提出的特征。(C)从轮廓领域学习边缘(laterals)。



图 5:用 RCN 解析验证码。


上图(A)为代表性的 ReCAPTCHA 解析方法所给出的前两个预测结果,它们的分割与标注由两个不同的标注者完成。(B)在受限的 CAPTCHA 数据集上 RCN 和 CNN 的词准率。在修改字符间距后,CNN 相比于 RCN 没有那么多的鲁棒性。(C)为不同 CAPTCHA 风格的准确率。(D)为代表性 BotDetect 解析和分割结果(使用不同颜色表示)。



图 6:使用少量样本进行训练的 MNIST 分类结果。


上图(A)为 RCN、CNN 和 CPM 的 MNIST 分类准确度。(B)为有损 MNIST 测试集上的分类准确度,图例展示了训练样本的总数。(C)为不同 RCN 配置的的 MNIST 分类准确度。



图 7:通过 RCN 生成、遮挡推理和场景文字解析。


这篇关于Vicarious发表Science论文:概率生成模型超越神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/336974

相关文章

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应