[量化投资-学习笔记004]Python+TDengine从零开始搭建量化分析平台-EMA均线

本文主要是介绍[量化投资-学习笔记004]Python+TDengine从零开始搭建量化分析平台-EMA均线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在之前的文章中用 Python 直接计算的 MA 均线,但面对 EMA 我认怂了。
Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式

高数是我们在大学唯一挂过的科。这次直接使用 Pandas 库的 DataFrame.ewm 函数,便捷又省事。
并且用 Pandas 直接对之前 MA 均线进行改写。

我一直同意:I would rather be vaguely right than precisely wrong.

EMA 公式:

EMA(t)=平滑常数*当前价格+(1-平滑常数)*EMA(t-1)

目录

    • 1. 获取数据
    • 2.计算均线
    • 3. 绘制图形
    • 题外话
      • 1. 均线的周期
      • 2. 均线的使用

1. 获取数据

还是使用 Restful 方式从 TDengine 查询数据,并转换成 DataFrame 格式。想看获取数据完整代码的同学,可以翻我之前的笔记。

##SQL
st = '2022-08-01'
et = '2022-10-01'
sql = 'select last(tdate),last(close) from trade_data_a.tdata where fcode="000001" and tdate>="'+st+'" and tdate<="'+et+'"' +' interval(1d) '## 通过Restful 从 TDengine 获取交易数据
def request_post(url, sql, user, pwd):try:sql = sql.encode("utf-8")headers = {'Connection': 'keep-alive','Accept-Encoding': 'gzip, deflate, br'}result = requests.post(url, data=sql, auth=HTTPBasicAuth(user,pwd),headers=headers)text=result.content.decode()return textexcept Exception as e:print(e)## 判断查询是否成功
def check_return(result):datart = json.loads(result).get("code")if  str(datart) == '0':chkrt = 'succ'else:chkrt = 'error' return chkrt## 将返回的 Json 转换为 DataFrame
def request_get_d(resInfo):load_data = json.loads(resInfo)data = load_data.get("data")df = pd.DataFrame(data)df.rename(columns={0:'tdate',1:'close'},inplace=True)return df

2.计算均线

不得不说,用别人的轮子就是方便。

if __name__ == '__main__':rt = request_post(tdurl,sql,username,password)scode = check_return(rt)if scode != 'error':df = request_get_d(rt)ema5 = pd.DataFrame.ewm(df['close'],span=5).mean() ema10 = pd.DataFrame.ewm(df['close'],span=10).mean() 

3. 绘制图形

        plt.title("EMA")plt.plot(ema5,'g',linewidth=1.0,label='EMA5')plt.plot(ema10,'r',linewidth=1.0,label='EMA10')plt.legend()plt.grid()plt.show()

看起来比上次计算 MA 均线简单多了,毕竟是站在别人的肩膀上嘛。
在这里插入图片描述

题外话

历史数据的均线基本不会变化,计算好以后可以直接写到 TDengine 里面,然后在 Grafana 中展示。

这部分的实现放在下个笔记。

1. 均线的周期

绘制均线必须要指定周期,通常使用的周期为5、10、20,为什么呢??

因为通常一周的交易日是5天,其他为5的倍数,那么这个周期是否能够准确趋势的变化呢?

有句话说的很好,技术分析总是在不断的自我验证中走向灭亡。

因此均线周期的选择并非一成不变的,通过修改周期,可能会获得不同的视角。

2. 均线的使用

仔细观察就会发现:均线相较于实际数据数据是滞后的,周期越长滞后越严重。MA 均线比 EMA 均线更加滞后,因为 EMA中 最近的数据具有较大的权重。

因此,均线只是对历史价格趋势的描述,而非预测。这点非常重要。也就是说,均线是用来确认趋势,对价格走势进行验证的。

这篇关于[量化投资-学习笔记004]Python+TDengine从零开始搭建量化分析平台-EMA均线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/335266

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及