AM@二阶常系数非齐次线性微分方程@待定系数法可解决的经典类型1

本文主要是介绍AM@二阶常系数非齐次线性微分方程@待定系数法可解决的经典类型1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • abstract
    • 二阶常系数非齐次线性微分方程
    • 待定系数法可解类型
      • 类型1
      • 小结

abstract

  • 二阶常系数非齐次线性微分方程
  • 待定系数法可解决的经典类型1及其解法总结与应用
    • 本文给出类型1为什么可以通过待定求出特解,并且待定函数要设成什么形式
    • 推理过程有一定工作量,而在应用中只需要记住可以用待定系数法求解,以及待定系数函数的形式公式以及公式中各部分的确定方法即可

二阶常系数非齐次线性微分方程

  • 二阶常系数非齐次线性微分方程的一般形式为 y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y′′+py+qy=f(x)(1),其中 p , q p,q p,q是常数

  • 求方程(1)的通解,归结为求对应齐次方程: y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y′′+py+qy=0(2)的通解 Y ( x ) Y(x) Y(x)和一个(1)特解 y ∗ ( x ) y^*(x) y(x);则 Y ( x ) + y ∗ ( x ) Y(x)+y^*(x) Y(x)+y(x)为(1)的通解

  • 对于非齐次的二阶常系数线性微分方程,仅有限的类型(以 f ( x ) f(x) f(x)的不同类型作区分)是容易解决的,这里介绍两种类型

待定系数法可解类型

  • f ( x ) f(x) f(x)取两种特殊类型的函数时,可以不用积分的方法求 y ∗ y^* y,而是通过待定系数法
  • 两种形式分别为:
    • f ( x ) = e λ x P m ( x ) f(x)=e^{\lambda{x}}P_{m}(x) f(x)=eλxPm(x), f ( x ) f(x) f(x)= e λ x ( P l ( x ) cos ⁡ ω x + P n ( x ) sin ⁡ ω x ) e^{\lambda{x}}(P_{l}(x)\cos{\omega}x+P_{n}(x)\sin{\omega{x}}) eλx(Pl(x)cosωx+Pn(x)sinωx)

类型1

  • f ( x ) f(x) f(x)= e λ x P m ( x ) e^{\lambda{x}}P_{m}(x) eλxPm(x)(2),其中 λ \lambda λ是常数, P m ( x ) P_{m}(x) Pm(x) x x x的一个** m m m次**多项式(设为 ∑ i = 0 m a i x i \sum_{i=0}^{m}a_ix^{i} i=0maixi)

    • 此时方程(1)表示为 y ′ ′ + p y ′ + q y y''+py'+qy y′′+py+qy= e λ x P m ( x ) e^{\lambda{x}}P_{m}(x) eλxPm(x)(2-1)
      • λ = 0 \lambda=0 λ=0时, f ( x ) = P m ( x ) f(x)=P_m(x) f(x)=Pm(x),方程(2-1)进一步改写为 y ′ ′ + p y ′ + q y y''+py'+qy y′′+py+qy= P m ( x ) P_{m}(x) Pm(x)(2-2)
    • 对式(2)求导
      • f ′ ( x ) f'(x) f(x)= λ e λ x P m ( x ) \lambda e^{\lambda{x}}P_{m}(x) λeλxPm(x)+ e λ x P m ′ ( x ) e^{\lambda{x}}P_{m}'(x) eλxPm(x)= e λ x ( λ P m ( x ) + P m ′ ( x ) ) e^{\lambda{x}}(\lambda{P_{m}(x)}+P_{m}'(x)) eλx(λPm(x)+Pm(x))其中 Q m = λ P m ( x ) + P m ′ ( x ) Q_{m}=\lambda{P_{m}(x)}+P_{m}'(x) Qm=λPm(x)+Pm(x)仍然是 m m m次多项式,继续求高阶导数,得到相仿的结论,即
        • f ( n ) ( x ) f^{(n)}(x) f(n)(x)= e λ x Q m [ n ] ( x ) e^{\lambda{x}}Q_{m}^{[n]}(x) eλxQm[n](x),其中 Q m [ n ] ( x ) Q_{m}^{[n]}(x) Qm[n](x)表示 f ( x ) f(x) f(x) n n n阶导数包含的 m m m阶多项式
      • 此类型的特点是,多项式函数和指数型函数的乘积的导数仍然是多项式函数和指数型函数的乘积,再官产方程(2-1),这恰好可以并为等号右端形式,即 e λ x P m ( x ) e^{\lambda{x}}P_{m}(x) eλxPm(x)
    • 由此可以推测 y ∗ y^* y= Q ( x ) e λ x Q(x)e^{\lambda{x}} Q(x)eλx(3)可能是方程(1)的特解[待定系数法]
      • 其中 Q ( x ) Q(x) Q(x)是某个多项式
    • 对(3)求导, y ∗ ′ y^{*'} y= Q ′ ( x ) e λ x Q'(x)e^{\lambda{x}} Q(x)eλx+ Q ( x ) λ e λ x Q(x)\lambda{e^{\lambda{x}}} Q(x)λeλx= e λ x ( Q ′ ( x ) + Q ( x ) λ ) e^{\lambda{x}}(Q'(x)+Q(x)\lambda) eλx(Q(x)+Q(x)λ)(3-1)
      • y ∗ ′ ′ y^{*''} y′′= λ e λ x ( ( Q ′ ( x ) + Q ( x ) λ ) \lambda e^{\lambda{x}}((Q'(x)+Q(x)\lambda) λeλx((Q(x)+Q(x)λ)+ e λ x ( Q ′ ′ ( x ) + λ Q ′ ( x ) ) e^{\lambda{x}}(Q''(x)+\lambda Q'(x)) eλx(Q′′(x)+λQ(x))= e λ x ( λ 2 Q ( x ) + 2 λ Q ′ ( x ) + Q ′ ′ ( x ) ) e^{\lambda{x}}(\lambda^2{Q(x)}+2\lambda{Q'(x)}+Q''(x)) eλx(λ2Q(x)+2λQ(x)+Q′′(x))(3-2)
    • 将(3,3-1,3-2)代入方程(2-1),得 e λ x ( λ 2 Q ( x ) + 2 λ Q ′ ( x ) + Q ′ ′ ( x ) ) e^{\lambda{x}}(\lambda^2{Q(x)}+2\lambda{Q'(x)}+Q''(x)) eλx(λ2Q(x)+2λQ(x)+Q′′(x))+ p e λ x ( Q ′ ( x ) + Q ( x ) λ ) pe^{\lambda{x}}(Q'(x)+Q(x)\lambda) peλx(Q(x)+Q(x)λ)+ q Q ( x ) e λ x qQ(x)e^{\lambda{x}} qQ(x)eλx= e λ x P m ( x ) e^{\lambda{x}}P_{m}(x) eλxPm(x),整理得 Q ′ ′ ( x ) + ( 2 λ + p ) Q ′ ( x ) + ( λ 2 + p λ + q ) Q ( x ) Q''(x)+(2\lambda+p)Q'(x)+(\lambda^2+p\lambda+q)Q(x) Q′′(x)+(2λ+p)Q(x)+(λ2+pλ+q)Q(x)= P m ( x ) P_{m}(x) Pm(x)(4)
  • 根据 λ \lambda λ与方程(1)的特征方程 ( r 2 + p r + q = 0 ) (r^2+pr+q=0) (r2+pr+q=0)(5)的根(特征根)关系,分为:不是特征根,单根,重根,这三种情形讨论

    • λ \lambda λ不是(5)的根,则 λ 2 + p λ + q ≠ 0 \lambda^2+p\lambda+q\neq{0} λ2+pλ+q=0(5-1),

      • 由于 P m ( x ) P_{m}(x) Pm(x) m m m次多项式,要使(4)式两边相等,则 Q ( x ) Q(x) Q(x)必须也是 m m m次多项式,记为 Q ( x ) = Q m ( x ) Q(x)=Q_{m}(x) Q(x)=Qm(x)= ∑ i = 0 m b i x i \sum_{i=0}^{m}b_ix^{i} i=0mbixi(6)
      • 将(6)代入方程(4),比较两边同次幂的系数,得到 0 ∼ m 0\sim{m} 0m次共 m + 1 m+1 m+1个方程
      • 解这 m + 1 m+1 m+1个方程,可得 b 0 , ⋯ , b m b_0,\cdots,b_m b0,,bm
      • 代入(3),从而得到(2-1)的特解
    • λ \lambda λ是(5)的单根(两个互异根中的一个),则 λ 2 + p λ + q = 0 \lambda^2+p\lambda+q={0} λ2+pλ+q=0(6-1)

      • 此处 λ \lambda λ是单根,设另一根是 λ ‾ \overline\lambda λ;由韦达定理: λ + λ ‾ = − p \lambda+\overline{\lambda}=-p λ+λ=p,而 λ + λ ≠ λ + λ ‾ \lambda+\lambda\neq{\lambda+\overline{\lambda}} λ+λ=λ+λ,所以 2 λ ≠ − p 2\lambda\neq{-p} 2λ=p,即 2 λ + p ≠ 0 2\lambda+p\neq{0} 2λ+p=0(7)

      • 此时方程(4)改写为 Q ′ ′ ( x ) + ( 2 λ + p ) Q ′ ( x ) Q''(x)+(2\lambda+p)Q'(x) Q′′(x)+(2λ+p)Q(x)= P m ( x ) P_{m}(x) Pm(x);因此 Q ′ ( x ) Q'(x) Q(x)必须是 m m m次多项式;相应的, Q ( x ) Q(x) Q(x)就得是 m + 1 m+1 m+1次多项式

      • Q ( x ) = x Q m ( x ) Q(x)=xQ_m(x) Q(x)=xQm(x)(8);仍然可以用系数比较法确定出 Q m ( x ) Q_{m}(x) Qm(x)的系数 b 0 , b 1 , ⋯ , b m b_0,b_1,\cdots,b_m b0,b1,,bm;就可以得出 Q m ( x ) Q_m(x) Qm(x),代入(8)得出 Q ( x ) Q(x) Q(x),再代入(3),得方程(2-1)的特解

    • λ \lambda λ是(5)的重根,此是也有(6-1)成立,并且 2 λ + p = 0 2\lambda+p=0 2λ+p=0(8-1)

      • 此时方程(4)改写为 Q ′ ′ ( x ) = P m ( x ) Q''(x)=P_{m}(x) Q′′(x)=Pm(x)
      • 要使方程(4)两端恒等,必有 Q ′ ′ ( x ) Q''(x) Q′′(x) m m m次多项式,从而可以令 Q ( x ) = x 2 Q m ( x ) Q(x)=x^2Q_{m}(x) Q(x)=x2Qm(x)
      • 同样使用系数比较法确定出 Q m ( x ) Q_{m}(x) Qm(x)的系数,从而得出 Q ( x ) Q(x) Q(x),最后代入(3)得出(2-1)的特解
  • 上述类型1的结论可知,方程(1)确实可以使用待定系数法求特解,该特解可以设为 y ∗ y^* y= x k Q m ( x ) e λ x x^kQ_{m}(x)e^{\lambda{x}} xkQm(x)eλx,并且保证这个待定形式是可求解且正确的👺

小结

  • 二阶常系数非齐次线性微分方程 y ′ ′ + p y ′ + q y y''+py'+qy y′′+py+qy= P m ( x ) e λ x P_m(x)e^{\lambda{x}} Pm(x)eλx(1)具有形如 y ∗ = x k Q m ( x ) e λ x y^*=x^kQ_{m}(x)e^{\lambda{x}} y=xkQm(x)eλx特解, ( k = 0 , 1 , 2 ) (k=0,1,2) (k=0,1,2)
    • 其中 Q m ( x ) Q_{m}(x) Qm(x), P m ( x ) P_m(x) Pm(x)是同为 m m m次多项式, Q m ( x ) Q_{m}(x) Qm(x) m + 1 m+1 m+1个系数由系数比较法构造 m + 1 m+1 m+1个方程分别求出
    • k k k按照 λ \lambda λ是方程(1)的特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0(2)的根的重数决定的,
      • 0 0 0重根, k = 0 k=0 k=0;(表示 λ \lambda λ不是方程(2)的根的简称)
      • 1 1 1重根, k = 1 k=1 k=1
      • 2 2 2重根, k = 2 k=2 k=2

  • y ′ ′ − 2 y ′ − 3 y y''-2y'-3y y′′2y3y= 3 x + 1 3x+1 3x+1(1)的一个特解
    • 方程类型分析:方程(1)是常系数非齐次线性微分方程中的经典类型1
      • f ( x ) f(x) f(x)= 3 x + 1 3x+1 3x+1= e 0 x ( 3 x + 1 ) e^{0x}(3x+1) e0x(3x+1),即对应类型1问题模型中有(1-1)
        • λ = 0 \lambda=0 λ=0;
        • P m ( x ) P_m(x) Pm(x)是一次多项式 3 x + 1 3x+1 3x+1
        • m = 1 m=1 m=1
    • 特征方程为 r 2 − 2 r − 3 = 0 r^2-2r-3=0 r22r3=0(2)
    • 检查 λ \lambda λ和(2)的根的关系: λ = 0 \lambda=0 λ=0不是(2)的根,
    • 应用类型1的待定系数法结论可知,方程(1)的特解可以设为 y ∗ y^* y= x k Q m ( x ) e λ x x^kQ_{m}(x)e^{\lambda{x}} xkQm(x)eλx,代入(1-1),可以具体为 y ∗ y^* y= Q 1 ( x ) Q_{1}(x) Q1(x)= b 0 x + b 1 b_0{x}+b_1 b0x+b1(3)( Q 1 ( x ) Q_1(x) Q1(x)是一次多项式)
    • 将(3)代入到方程(1): − 2 b 0 − 3 ( b 0 x + b 1 ) -2b_0-3(b_0{x}+b_1) 2b03(b0x+b1)= 3 x + 1 3x+1 3x+1,整理得 − 3 b 0 x − 2 b 0 − 3 b 1 -3b_0x-2b_0-3b_1 3b0x2b03b1= 3 x − 1 3x-1 3x1(4)
    • 由系数比较法, − 3 b 0 = 3 -3b_0=3 3b0=3; − 2 b 0 − 3 b 1 -2b_0-3b_1 2b03b1= 1 1 1,解得 b 0 = − 1 b_0=-1 b0=1; b 1 = 1 3 b_1=\frac{1}{3} b1=31,从而得到特解为 y ∗ = − x + 1 3 y^*=-x+\frac{1}{3} y=x+31

这篇关于AM@二阶常系数非齐次线性微分方程@待定系数法可解决的经典类型1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/329804

相关文章

如何解决线上平台抽佣高 线下门店客流少的痛点!

目前,许多传统零售店铺正遭遇客源下降的难题。尽管广告推广能带来一定的客流,但其费用昂贵。鉴于此,众多零售商纷纷选择加入像美团、饿了么和抖音这样的大型在线平台,但这些平台的高佣金率导致了利润的大幅缩水。在这样的市场环境下,商家之间的合作网络逐渐成为一种有效的解决方案,通过资源和客户基础的共享,实现共同的利益增长。 以最近在上海兴起的一个跨行业合作平台为例,该平台融合了环保消费积分系统,在短

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

自定义类型:结构体(续)

目录 一. 结构体的内存对齐 1.1 为什么存在内存对齐? 1.2 修改默认对齐数 二. 结构体传参 三. 结构体实现位段 一. 结构体的内存对齐 在前面的文章里我们已经讲过一部分的内存对齐的知识,并举出了两个例子,我们再举出两个例子继续说明: struct S3{double a;int b;char c;};int mian(){printf("%zd\n",s

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

两个月冲刺软考——访问位与修改位的题型(淘汰哪一页);内聚的类型;关于码制的知识点;地址映射的相关内容

1.访问位与修改位的题型(淘汰哪一页) 访问位:为1时表示在内存期间被访问过,为0时表示未被访问;修改位:为1时表示该页面自从被装入内存后被修改过,为0时表示未修改过。 置换页面时,最先置换访问位和修改位为00的,其次是01(没被访问但被修改过)的,之后是10(被访问了但没被修改过),最后是11。 2.内聚的类型 功能内聚:完成一个单一功能,各个部分协同工作,缺一不可。 顺序内聚:

Mysql BLOB类型介绍

BLOB类型的字段用于存储二进制数据 在MySQL中,BLOB类型,包括:TinyBlob、Blob、MediumBlob、LongBlob,这几个类型之间的唯一区别是在存储的大小不同。 TinyBlob 最大 255 Blob 最大 65K MediumBlob 最大 16M LongBlob 最大 4G