MATLAB实现INFO-ELM向量加权算法优化极限学习机多输入单输出回归预测

本文主要是介绍MATLAB实现INFO-ELM向量加权算法优化极限学习机多输入单输出回归预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

极限学习机(Extreme Learning Machine, ELM)是近几年发展起来的一种有效的新型单隐层前馈神经网络学习算法,和传统学习算法不同的是,ELM算法的网络参数随机选取,无需调节,输出权值是通过对平方损失函数最小化得到的最小二乘解,因此该算法具有较快的学习速度和良好的泛化性能,并在多模式分类,非线性预测等领域得到了广泛的应用.但是ELM在学习过程中也不可避免的存在众多缺点,其参数的随机选取导致一系列非最优参数的生成,使得所需隐含层节点数多于传统学习算法,影响其泛化性能,并导致系统的病态;在学习过程中仅仅只利用了输入参数的信息进行计算,而忽略了非常有价值的实际输出值;将其应用于工业生产中所得到的精度不能满足实际的标准等等.针对上述缺点,本文提出了一种对ELM的探路者搜索算法极限学习机(PFA-ELM)。

传统的单隐层神经网络由三部分组成,分别是输入层、隐含层和输出层,输入层神经元节点个数即输入变量的个数,隐含层节点个数则需要人为给定,输出层节点个数也就是输出变量的个数。在2006年,新加坡南洋理工大学的Huang等[16]在传统的单隐层神经网络的基础上提出了一种新的前馈神经网络学习算法,命名为极限学习机(extremelearningmachine,ELM),不同于传统的基于梯度的前馈神经网络算法,该方法随机产生隐含层与输入层之间的连接权值及隐含层神经元的阈值,训练过程中只需要设置隐含神经元的个数便可获得唯一最优解,极限学习机网络结构如图1所示。

⛄ 部分代码

function [output] = my_map(type, raw_data, raw_data_max, raw_data_min, max, min)

if type ~= 0

    output = my_pos_map(raw_data, raw_data_max, raw_data_min, max, min);

end

if type ~= 1 

    output = my_rev_map(raw_data, raw_data_max, raw_data_min, max, min);

end

end

function [out] = my_pos_map(raw_data, raw_data_max, raw_data_min, max, min)

    for i = 1:length(raw_data')

        out(i) = (max - min) * (raw_data(i) - raw_data_min) / (raw_data_max - raw_data_min) + min;

    end

end

function [out] = my_rev_map(raw_data, raw_data_max, raw_data_min, max, min)

    for i = 1:length(raw_data')

        out(i) = (raw_data(i) - min) * (raw_data_max - raw_data_min) / (max - min) + raw_data_min;

    end

end

⛄ 运行结果

⛄ 参考文献

[1] 吉威, 刘勇, 甄佳奇,等. 基于随机权重粒子群优化极限学习机的土壤湿度预测[J]. 新疆大学学报:自然科学版, 2020, 37(2):7.

[2] 王一宾, 程玉胜, 何月,等. 回归核极限学习机的多标记学习算法[J]. 模式识别与人工智能, 2018, 31(5):12.

[3] 何月. 关联规则回归核极限学习机的多标记学习算法[D]. 安庆师范大学.

[4] 蔡伟彪. 基于稳健性改进的极限学习机回归算法研究[D]. 湘潭大学.

[5] 付学敏, 王辉. 基于极限学习机的汽油辛烷值含量回归预测建模研究[J]. 景德镇高专学报, 2021, 036(003):73-76.

[6] 刘学艺. 极限学习机算法及其在高炉冶炼过程建模中的应用研究[D]. 浙江大学.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

这篇关于MATLAB实现INFO-ELM向量加权算法优化极限学习机多输入单输出回归预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/325226

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组