本文主要是介绍睿智的智能优化算法4——进化策略(Evolution Strategy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
睿智的智能优化算法4——进化策略(Evolution Strategy)
- 1、算法思路
- 1.1、杂交方式
- 1.2、基因突变
- 1.3、淘汰低适应度个体。
- 2、与遗传算法对比
- 2.1、相同点:
- 2.2、不同点:
- 实现代码
- GITHUB下载连接
遗传算法是一种基于达尔文进化论的与基因相关的优化算法,但由于其编码方式需要用到01编码,所以其存在实数处理方面的局限性;本文将介绍遗传算法的姊妹,进化策略,其可以用于实数处理。关于什么是遗传算法,及其实现方式,大家可以关注我的另一篇博文睿智的智能优化算法2——遗传算法的python实现
1、算法思路
进化策略的思路与遗传算法相似,二者都是利用进化理论进行优化,即利用遗传信息一代代传承变异,通过适者生存的理论,保存适应度高的个体,得到最优解。
了解进化策略,首先要从进化策略的个体入手。
进化策略的每个个体都具有两个特点。
1、基因,通过基因进行运算可以得到每个个体的适应度。
2、变异强度,变异强度则是每次基因杂交完,基因变化的一个范围。
假设一个种群有四个个体,四个个体的参数如图所示:
进化策略的更新方式主要分为两个部分:
1、通过现有的种群,更新后代,其中需要经过杂交、基因突变两个过程。
2、将生成的后代与他们的父母辈合成一个种群,在其中淘汰低适应度个体。
接下来我将详细讲述杂交、基因突变、淘汰低适应度个体的过程。
1.1、杂交方式
与遗传算法不同,进化策略的杂交方式主要分为 步:
1、随机选择双亲。
2、从双亲身上分别取指定位置的基因,二者组合成为新基因。
3、从双亲身上分别取指定位置的杂交强度,二者组合成为新的变异强度。
其执行示意图如下:
执行代码如下所示:
# 杂交,随机选择父母
p1, p2 = np.random.choice(self.pop_size, size=2, replace=False)
# 选择杂交点
cp = np.random.randint(0, 2, self.gene_size, dtype=np.bool)
# 当前孩子基因的杂交结果
kv[cp] = self.pop['DNA'][p1, cp]
kv[~cp] = self.pop['DNA'][p2, ~cp]
# 当前孩子变异强度的杂交结果
ks[cp] = self.pop['mut_strength'][p1, cp]
ks[~cp] = self.pop['mut_strength'][p2, ~cp]
1.2、基因突变
在算法中,每次个体杂交完,都会进行一定的变异,变异的多少由个体的变异强度决定,其变异的代码如下。其中np.random.randn()满足正态分布。
# kv代表DNA,ks代表变异强度
kv += ks * np.random.randn()
变异的示意图如下:
由于算法最终要收敛,所以变异强度需要不断变小,但不可以低于0,变小方式如下:
# 变异强度要大于0,并且不断缩小
ks[:] = np.maximum(ks + (np.random.rand()-0.5), 0.)
1.3、淘汰低适应度个体。
淘汰低适应度个体前首先需要合并父种群和子种群
# 进行vertical垂直叠加
for key in ['DNA', 'mut_strength']:self.pop[key] = np.vstack((self.pop[key], self.kids[key]))
再计算整个种群的适应度:
# 计算fitness
self.pred = F(self.pop['DNA'])
fitness = self.get_fitness()
最后对整个适应度进行,获得适应度从大到小的索引,并选择适应度最大的POP_SIZE个个体:
# 读出按照降序排列fitness的索引
max_index = np.argsort(-fitness)
# 选择适应度最大的POP_SIZE个个体
good_idx = max_index[:POP_SIZE]
for key in ['DNA', 'mut_strength']:self.pop[key] = self.pop[key][good_idx]
其整体的执行过程如图所示:
2、与遗传算法对比
2.1、相同点:
进化策略的思路与遗传算法相似,二者都是利用进化理论进行优化,即利用遗传信息一代代传承变异,通过适者生存的理论,保存适应度高的个体,得到最优解。
2.2、不同点:
1、遗传算法采用二进制编码杂交;而进化策略使用实数。
2、遗传算法采用二进制0->1,1->实现变异;而进化策略则使用变异强度实现变异。
3、遗传算法仅需要一条编码链,用于存储个体的基因;进化策略在编码时,不仅要有实数编码链,还要有变异强度编码链。
4、遗传算法在交叉繁殖的时候,仅实现基因的交叉;进化策略则要实现两条链的交叉,父母辈的实数链交叉形成子辈的实数链,变异强度编码链交叉形成子辈的变异强度编码链。
5、遗传算法在变异时,随机选择基因段变异;进化策略则是将实数链上的实数值看作正态分布的均值μ,将变异强度编码链上变异强度值看作正态分布的标准差σ。
6、遗传算法在自然选择时,通过轮盘赌实现自然选择;进化策略则将子种群加入到父种群中,按照适应度排序,直接选出适应度最大的pop_size个个体。
实现代码
本次实现代码源自莫烦python,但我将其改成了class的形式。
import numpy as np
import matplotlib.pyplot as plt# 每个个体的长度
GENE_SIZE = 1
# 每个基因的范围
GENE_BOUND = [0, 5]
# 200代
N_GENERATIONS = 200
# 种群的大小
POP_SIZE = 100
# 每一代生成50个孩子
N_KID = 50 # 寻找函数的最大值
def F(x): return np.sin(10*x)*x + np.cos(2*x)*x class ES():def __init__(self,gene_size,pop_size,n_kid):# 基因长度代表字符串的长度self.gene_size = gene_size# 种群的大小代表种群中有几个个体self.pop_size = pop_sizeself.n_kid = n_kidself.init_pop()print(self.pop)# 降到一维def get_fitness(self): return self.pred.flatten()# 初始化种群def init_pop(self):self.pop = dict(DNA=5 * np.random.rand(1, self.gene_size).repeat(POP_SIZE, axis=0),mut_strength=np.random.rand(POP_SIZE, self.gene_size))# 更新后代def make_kid(self):# DNA指的是当前孩子的基因# mut_strength指的是变异强度self.kids = {'DNA': np.empty((self.n_kid, self.gene_size)),'mut_strength': np.empty((self.n_kid, self.gene_size))}for kv, ks in zip(self.kids['DNA'], self.kids['mut_strength']):# 杂交,随机选择父母p1, p2 = np.random.choice(self.pop_size, size=2, replace=False)# 选择杂交点cp = np.random.randint(0, 2, self.gene_size, dtype=np.bool)# 当前孩子基因的杂交结果kv[cp] = self.pop['DNA'][p1, cp]kv[~cp] = self.pop['DNA'][p2, ~cp]# 当前孩子变异强度的杂交结果ks[cp] = self.pop['mut_strength'][p1, cp]ks[~cp] = self.pop['mut_strength'][p2, ~cp]# 变异强度要大于0,并且不断缩小ks[:] = np.maximum(ks + (np.random.rand()-0.5), 0.) kv += ks * np.random.randn()# 截断kv[:] = np.clip(kv,GENE_BOUND[0],GENE_BOUND[1]) # 淘汰低适应度后代def kill_bad(self):# 进行vertical垂直叠加for key in ['DNA', 'mut_strength']:self.pop[key] = np.vstack((self.pop[key], self.kids[key]))# 计算fitnessself.pred = F(self.pop['DNA'])fitness = self.get_fitness()# 读出按照降序排列fitness的索引max_index = np.argsort(-fitness)# 选择适应度最大的50个个体good_idx = max_index[:POP_SIZE] for key in ['DNA', 'mut_strength']:self.pop[key] = self.pop[key][good_idx]test1 = ES(gene_size = GENE_SIZE,pop_size = POP_SIZE,n_kid = N_KID)plt.ion()
x = np.linspace(*GENE_BOUND, 200)
plt.plot(x, F(x))for _ in range(N_GENERATIONS):# 画图部分if 'sca' in globals(): sca.remove()sca = plt.scatter(test1.pop['DNA'], F(test1.pop['DNA']), s=200, lw=0, c='red', alpha=0.5)plt.pause(0.05)# ES更新kids = test1.make_kid()pop = test1.kill_bad()plt.ioff(); plt.show()
GITHUB下载连接
https://github.com/bubbliiiing/Optimization_Algorithm
希望得到朋友们的喜欢。
有问题的朋友可以提问噢。
这篇关于睿智的智能优化算法4——进化策略(Evolution Strategy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!