睿智的智能优化算法4——进化策略(Evolution Strategy)

2023-11-01 08:40

本文主要是介绍睿智的智能优化算法4——进化策略(Evolution Strategy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

睿智的智能优化算法4——进化策略(Evolution Strategy)

  • 1、算法思路
    • 1.1、杂交方式
    • 1.2、基因突变
    • 1.3、淘汰低适应度个体。
  • 2、与遗传算法对比
    • 2.1、相同点:
    • 2.2、不同点:
  • 实现代码
  • GITHUB下载连接

遗传算法是一种基于达尔文进化论的与基因相关的优化算法,但由于其编码方式需要用到01编码,所以其存在实数处理方面的局限性;本文将介绍遗传算法的姊妹,进化策略,其可以用于实数处理。关于什么是遗传算法,及其实现方式,大家可以关注我的另一篇博文睿智的智能优化算法2——遗传算法的python实现
在这里插入图片描述

1、算法思路

进化策略的思路与遗传算法相似,二者都是利用进化理论进行优化,即利用遗传信息一代代传承变异,通过适者生存的理论,保存适应度高的个体,得到最优解。
了解进化策略,首先要从进化策略的个体入手。
进化策略的每个个体都具有两个特点。
1、基因,通过基因进行运算可以得到每个个体的适应度。
2、变异强度,变异强度则是每次基因杂交完,基因变化的一个范围。
假设一个种群有四个个体,四个个体的参数如图所示:
在这里插入图片描述
进化策略的更新方式主要分为两个部分:
1、通过现有的种群,更新后代,其中需要经过杂交、基因突变两个过程。
2、将生成的后代与他们的父母辈合成一个种群,在其中淘汰低适应度个体。
接下来我将详细讲述杂交、基因突变、淘汰低适应度个体的过程。

1.1、杂交方式

与遗传算法不同,进化策略的杂交方式主要分为 步:
1、随机选择双亲。
2、从双亲身上分别取指定位置的基因,二者组合成为新基因。
3、从双亲身上分别取指定位置的杂交强度,二者组合成为新的变异强度。
其执行示意图如下:
在这里插入图片描述
执行代码如下所示:

# 杂交,随机选择父母
p1, p2 = np.random.choice(self.pop_size, size=2, replace=False)
# 选择杂交点
cp = np.random.randint(0, 2, self.gene_size, dtype=np.bool)
# 当前孩子基因的杂交结果
kv[cp] = self.pop['DNA'][p1, cp]
kv[~cp] = self.pop['DNA'][p2, ~cp]
# 当前孩子变异强度的杂交结果
ks[cp] = self.pop['mut_strength'][p1, cp]
ks[~cp] = self.pop['mut_strength'][p2, ~cp]

1.2、基因突变

在算法中,每次个体杂交完,都会进行一定的变异,变异的多少由个体的变异强度决定,其变异的代码如下。其中np.random.randn()满足正态分布。

# kv代表DNA,ks代表变异强度
kv += ks * np.random.randn()

变异的示意图如下:
在这里插入图片描述
由于算法最终要收敛,所以变异强度需要不断变小,但不可以低于0,变小方式如下:

# 变异强度要大于0,并且不断缩小
ks[:] = np.maximum(ks + (np.random.rand()-0.5), 0.)    

1.3、淘汰低适应度个体。

淘汰低适应度个体前首先需要合并父种群和子种群

# 进行vertical垂直叠加
for key in ['DNA', 'mut_strength']:self.pop[key] = np.vstack((self.pop[key], self.kids[key]))

再计算整个种群的适应度:

# 计算fitness
self.pred = F(self.pop['DNA'])
fitness = self.get_fitness()

最后对整个适应度进行,获得适应度从大到小的索引,并选择适应度最大的POP_SIZE个个体:

# 读出按照降序排列fitness的索引
max_index = np.argsort(-fitness)
# 选择适应度最大的POP_SIZE个个体
good_idx = max_index[:POP_SIZE]   
for key in ['DNA', 'mut_strength']:self.pop[key] = self.pop[key][good_idx]

其整体的执行过程如图所示:
在这里插入图片描述

2、与遗传算法对比

2.1、相同点:

进化策略的思路与遗传算法相似,二者都是利用进化理论进行优化,即利用遗传信息一代代传承变异,通过适者生存的理论,保存适应度高的个体,得到最优解。

2.2、不同点:

1、遗传算法采用二进制编码杂交;而进化策略使用实数。
2、遗传算法采用二进制0->1,1->实现变异;而进化策略则使用变异强度实现变异。

3、遗传算法仅需要一条编码链,用于存储个体的基因;进化策略在编码时,不仅要有实数编码链,还要有变异强度编码链。

4、遗传算法在交叉繁殖的时候,仅实现基因的交叉;进化策略则要实现两条链的交叉,父母辈的实数链交叉形成子辈的实数链,变异强度编码链交叉形成子辈的变异强度编码链。

5、遗传算法在变异时,随机选择基因段变异;进化策略则是将实数链上的实数值看作正态分布的均值μ,将变异强度编码链上变异强度值看作正态分布的标准差σ。

6、遗传算法在自然选择时,通过轮盘赌实现自然选择;进化策略则将子种群加入到父种群中,按照适应度排序,直接选出适应度最大的pop_size个个体。

实现代码

本次实现代码源自莫烦python,但我将其改成了class的形式。

import numpy as np
import matplotlib.pyplot as plt# 每个个体的长度
GENE_SIZE = 1
# 每个基因的范围
GENE_BOUND = [0, 5]    
# 200代   
N_GENERATIONS = 200
# 种群的大小
POP_SIZE = 100          
# 每一代生成50个孩子
N_KID = 50  # 寻找函数的最大值
def F(x): return np.sin(10*x)*x + np.cos(2*x)*x    class ES():def __init__(self,gene_size,pop_size,n_kid):# 基因长度代表字符串的长度self.gene_size = gene_size# 种群的大小代表种群中有几个个体self.pop_size = pop_sizeself.n_kid = n_kidself.init_pop()print(self.pop)# 降到一维def get_fitness(self): return self.pred.flatten()# 初始化种群def init_pop(self):self.pop = dict(DNA=5 * np.random.rand(1, self.gene_size).repeat(POP_SIZE, axis=0),mut_strength=np.random.rand(POP_SIZE, self.gene_size))# 更新后代def make_kid(self):# DNA指的是当前孩子的基因# mut_strength指的是变异强度self.kids = {'DNA': np.empty((self.n_kid, self.gene_size)),'mut_strength': np.empty((self.n_kid, self.gene_size))}for kv, ks in zip(self.kids['DNA'], self.kids['mut_strength']):# 杂交,随机选择父母p1, p2 = np.random.choice(self.pop_size, size=2, replace=False)# 选择杂交点cp = np.random.randint(0, 2, self.gene_size, dtype=np.bool)# 当前孩子基因的杂交结果kv[cp] = self.pop['DNA'][p1, cp]kv[~cp] = self.pop['DNA'][p2, ~cp]# 当前孩子变异强度的杂交结果ks[cp] = self.pop['mut_strength'][p1, cp]ks[~cp] = self.pop['mut_strength'][p2, ~cp]# 变异强度要大于0,并且不断缩小ks[:] = np.maximum(ks + (np.random.rand()-0.5), 0.)    kv += ks * np.random.randn()# 截断kv[:] = np.clip(kv,GENE_BOUND[0],GENE_BOUND[1])   # 淘汰低适应度后代def kill_bad(self):# 进行vertical垂直叠加for key in ['DNA', 'mut_strength']:self.pop[key] = np.vstack((self.pop[key], self.kids[key]))# 计算fitnessself.pred = F(self.pop['DNA'])fitness = self.get_fitness()# 读出按照降序排列fitness的索引max_index = np.argsort(-fitness)# 选择适应度最大的50个个体good_idx = max_index[:POP_SIZE]   for key in ['DNA', 'mut_strength']:self.pop[key] = self.pop[key][good_idx]test1 = ES(gene_size = GENE_SIZE,pop_size = POP_SIZE,n_kid = N_KID)plt.ion()     
x = np.linspace(*GENE_BOUND, 200)
plt.plot(x, F(x))for _ in range(N_GENERATIONS):# 画图部分if 'sca' in globals(): sca.remove()sca = plt.scatter(test1.pop['DNA'], F(test1.pop['DNA']), s=200, lw=0, c='red', alpha=0.5)plt.pause(0.05)# ES更新kids = test1.make_kid()pop = test1.kill_bad()plt.ioff(); plt.show()

GITHUB下载连接

https://github.com/bubbliiiing/Optimization_Algorithm

希望得到朋友们的喜欢。
有问题的朋友可以提问噢。

这篇关于睿智的智能优化算法4——进化策略(Evolution Strategy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/321821

相关文章

uniapp接入微信小程序原生代码配置方案(优化版)

uniapp项目需要把微信小程序原生语法的功能代码嵌套过来,无需把原生代码转换为uniapp,可以配置拷贝的方式集成过来 1、拷贝代码包到src目录 2、vue.config.js中配置原生代码包直接拷贝到编译目录中 3、pages.json中配置分包目录,原生入口组件的路径 4、manifest.json中配置分包,使用原生组件 5、需要把原生代码包里的页面修改成组件的方

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多

基于 Java 实现的智能客服聊天工具模拟场景

服务端代码 import java.io.BufferedReader;import java.io.IOException;import java.io.InputStreamReader;import java.io.PrintWriter;import java.net.ServerSocket;import java.net.Socket;public class Serv

大林 PID 算法

Dahlin PID算法是一种用于控制和调节系统的比例积分延迟算法。以下是一个简单的C语言实现示例: #include <stdio.h>// DALIN PID 结构体定义typedef struct {float SetPoint; // 设定点float Proportion; // 比例float Integral; // 积分float Derivative; // 微分flo

服务器雪崩的应对策略之----SQL优化

SQL语句的优化是数据库性能优化的重要方面,特别是在处理大规模数据或高频访问时。作为一个C++程序员,理解SQL优化不仅有助于编写高效的数据库操作代码,还能增强对系统性能瓶颈的整体把握。以下是详细的SQL语句优化技巧和策略: SQL优化 1. 选择合适的数据类型2. 使用索引3. 优化查询4. 范式化和反范式化5. 查询重写6. 使用缓存7. 优化数据库设计8. 分析和监控9. 调整配置1、

Java中如何优化数据库查询性能?

Java中如何优化数据库查询性能? 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨在Java中如何优化数据库查询性能,这是提升应用程序响应速度和用户体验的关键技术。 优化数据库查询性能的重要性 在现代应用开发中,数据库查询是最常见的操作之一。随着数据量的增加和业务复杂度的提升,数据库查询的性能优化显得尤为重

设置Nginx缓存策略

详细信息 Nginx服务器的缓存策略设置方法有两种:add_header或者expires。 1. add_header 1)语法:add_header name value。 2)默认值:none。 3)使用范围:http、server、location。 配置示例如下: add_header cache-control "max-age=86400";#设置缓存时间为1天。add

LeetCode 算法:二叉树的中序遍历 c++

原题链接🔗:二叉树的中序遍历 难度:简单⭐️ 题目 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 示例 1: 输入:root = [1,null,2,3] 输出:[1,3,2] 示例 2: 输入:root = [] 输出:[] 示例 3: 输入:root = [1] 输出:[1] 提示: 树中节点数目在范围 [0, 100] 内 -100 <= Node.