简单了解Knowledge distillation知识蒸馏

2023-11-01 01:58

本文主要是介绍简单了解Knowledge distillation知识蒸馏,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:Distilling the Knowledge in a Neural Network
一、什么是知识蒸馏,为什么要使用知识蒸馏?
知识蒸馏就是把一个大模型的知识迁移到小模型上,因为大模型虽然能达到较高的精度,但它的训练往往需要大量的资源和时间,小模型的训练需要的资源少,训练速度快,但它的精度往往不如大模型。显然,不是每个人都拥有足够的资源训练大模型,为了使用更少的资源、更快的速度,并且精度不能太差,不如让小模型Student学习大模型Teacher的知识,用更少的资源就能达到不错的精度。
二、知识是什么?
首先,区分硬标签和软标签,硬标签就是对分类结果,1就是1,0就是0,一只猫判断它是猫的概率是1,是狗的概率是0,软标签就是用概率给它一个不那么确定的标签,一只猫判断它是猫的概率是0.8,是狗的概率是0.2。
硬标签是我们数据集中通常已知的,一个模型经过训练后它输出的往往是软标签,软标签比硬标签具有更多的知识,比如图片猫的概率是0.8,狗的概率是0.2,说明猫和狗在一定程度上有相似性,而和苹果的相似性为0,这给了我们类别之间更多的关联和信息。
因此,小模型除了利用已知的硬标签,还可以从大模型给的预测软标签中学习更多的“知识”。
三、如何蒸馏知识
Student既要学习真实标签,也就是硬标签,还要学习Teacher给的软标签,那么损失函数就定义为:
L=CE(y,p)+αCE(q,p)
y是真实标签,p是Student的预测,q是Teacher的预测。
此外,由于Softmax通常把不同类的预测概率区分的很大,比如猫的是0.999,狗是0.001,苹果是0,这样狗和苹果和猫的相似度几乎都一样为0了,为了避免这种情况,加入温度Temperature,让每个类的预测差距不那么大:
在这里插入图片描述
这样更有利于Student学习到知识。
四、具体应用
kl散度计算:

# 计算完kl散度总和再除以batch_size
F.kl_div(s_pre, t_pre, reduction='batchmean')
# 计算每个p(x_i)log(p(x_i)/q(x_i))
F.kl_div(s_pre, t_pre, reduction  = 'none')

这篇关于简单了解Knowledge distillation知识蒸馏的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319671

相关文章

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu