川川数模-D4-多元线性回归模型

2023-10-31 10:10

本文主要是介绍川川数模-D4-多元线性回归模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一元线性回归

1.根据数据画图;
2.根据所画图形进行分析,调整模型;
eg:
源代码1

clear all
clc
x=1:10;
y=[2650,1942,1493,1086,766,539,485,291,224,202];
z=zeros(size(y));
N=length(y);
for i =1:Nz(i)=log(y(i));%调整plot(x(i),z(i),'ok');hold on
end

实验结果1
请添加图片描述
源代码2

clear all
clc
x=1:10;
y=[2650,1942,1493,1086,766,539,485,291,224,202];
z=zeros(size(y));
N=length(y);
for i =1:Nz(i)=log(y(i));
end
[p,s]=polyfit(x,z,1)
y1=polyval(p,x);
hold on
plot(x,y1)

实验结果2

p =-0.2984    8.1671s = 包含以下字段的 struct:R: [2×2 double]df: 8normr: 0.2316

请添加图片描述

p = polyfit(x,y,n); % 其中x,y表示需要拟合的坐标点,大小需要一样; n表示多项式拟合的次数。 %
返回值p表示多项式拟合的系数,系数从高到低排列

polyfit使用方法

多元线性回归

[b,bint,r,rint,stats]=regress(y,x,alpha)
alpha为显著性水平,缺省设定为0.05,b表示为输出输出量,bint为回归系数估计值和它们的置信区间,r为残差,rint为置信区间,stats适用于检验回归模型的统计量。
regress用法

例题:
请添加图片描述
请添加图片描述
实验分析及源代码:

clear all
clc
y=[90.9,97.4,113.5,125.7,122.8,133.3,149.3,144.2,166.4,195.0,229.8,228.7,206.1,257.9,324.1,386.6,423.0,401.9,474.9,424.5]
x1=[596.7,637.7,691.1,756,799,873.4,944,992.7,1077.6,1185.9,1326.4,1434.2,1549.2,1718,1918.3,2163.9,2417.8,2631.7,2954.7,3073]
x2=[0.7167,0.7277,0.7436,0.7676,0.7906,0.8254,0.8679,0.9145,0.9601,1,1.0575,1.1508,1.2579,1.3234,1.4005,1.5042,1.6342,1.7842,1.9514,2.0688]
y=[y'];
x=[ones(size(x1')),x1',x2'];
[b,bint,r,rint,stats]=regress(y,x)

实验结果

b =322.72500.6185-859.4790bint =1.0e+03 *0.2243    0.42110.0005    0.0008-1.1215   -0.5975r =15.13065.72812.4682-4.8421-14.5677-20.1710-11.3062-6.47332.4119-1.6737-4.34688.07296.400610.101018.690018.42509.5311-14.93492.0085-20.6521rint =-8.8991   39.1602-20.0842   31.5404-23.8131   28.7495-30.9710   21.2868-39.7357   10.6002-44.1322    3.7901-37.1412   14.5288-32.9501   20.0034-24.3505   29.1743-28.4886   25.1412-30.1760   21.4823-18.6017   34.7476-16.4416   29.2428-15.3656   35.5677-6.2548   43.6348-4.6295   41.4795-13.7104   32.7727-39.1156    9.2458-22.1655   26.1825-38.3634   -2.9408stats =0.9908  919.8529    0.0000  161.7073

与书本上答案相符

其他
polyfit使用方法
regress用法

这篇关于川川数模-D4-多元线性回归模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314609

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G