番茄(西红柿)叶病害识别(Python代码,pyTorch框架,深度卷积网络模型,很容易替换为其它模型,带有GUI识别界面)

本文主要是介绍番茄(西红柿)叶病害识别(Python代码,pyTorch框架,深度卷积网络模型,很容易替换为其它模型,带有GUI识别界面),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码运行要求:Torch>=1.13.1即可

1.数据集介绍:
 

 每一个文件夹里装有一类病害叶子的照片,一共10种类别,每种类别下有1100张照片

从第一类到第十类分别如下图所示 

 

 

  

 

 

 2.整体文件夹

data文件夹存放的是未被划分训练集和测试集的原始照片

picture文件夹存放的是经hf.py对data文件夹处理后,生成的训练集和测试集照片

CNN.pth存放的是经train.py训练后的模型参数

GUI.py可以调用训练好的网络模型参数对多张照片连续进行识别

model.py 是存放模型的脚本,可以任意改为其它模型

predict.py是调用训练好的模型参数单个照片识别脚本,对单个 照片进行识别

3.经过30个epoch训练后,测试集达到91.06%的效果(用户如果计算机配置较高,可以增加epoch,效果也会更好),GUI界面识别效果和predict.py识别效果如视频所示番茄(西红柿)叶病害识别(Python代码,pyTorch框架,深度卷积网络模型,很容易替换为其它模型,带有GUI识别界面)_哔哩哔哩_bilibili

已经将代码和数据放在同一文件夹进行压缩,很容易进行运行代码,无需配置繁琐路径,对项目感兴趣的可以关注

import os
import jsonimport torch
from PIL import Image
from torchvision import transforms
import tkinter as tk
from tkinter import filedialogfrom model import CNN
from PIL import ImageTk#压缩包https://mbd.pub/o/bread/ZJ2Vk55w

这篇关于番茄(西红柿)叶病害识别(Python代码,pyTorch框架,深度卷积网络模型,很容易替换为其它模型,带有GUI识别界面)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/305393

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss