首先声明,我是一个菜鸟。一下文章中出现技术误导情况盖不负责
我们首先分析度温场的求解吧,假设边界条件和初始条件经已设定。在贴码代之前,我们先谈谈这个类要需什么属性和行为:节点组数用于存储盘算变量、网格小大、度维定义、盘算函数,也就这么多了。如何盘算某节点的度温?盘算其东南西北方位相接节点对该节点的穿导热之和便可,读者这里可以虑考一下如何添加源相和对流换热进去。
package Soong.Solver
{public class TSolver{public var Tlist:Vector.<Node>;private var xGridNum:uint = 1;//Number of Grid Allocated in X Directionprivate var yGridNum:uint = 1;//Number of Grid Allocated in X Directionpublic var dx:Number = 1;//Grid Size in X Directionpublic var dy:Number = 1;//Grid Size in Y Directionpublic var Sx:Number = 0;//Area of Heat Interface in X Directionpublic var Sy:Number = 0;//Area of Heat Interface in X Directionpublic var cellVol:Number = 0;//Volume of Control Volumepublic var Freezing:Boolean=false;//If Time to Freezepublic function TSolver(xGridNum:uint,yGridNum:uint,dx:Number,dy:Number){this.xGridNum = xGridNum;this.yGridNum = yGridNum;this.dx = dx;this.dy = dy;this.Sx = dy * 1;this.Sy = dx * 1;this.cellVol = dx * dy * 1;}public function Step(timeStep:Number):void{var col:uint = 0;var row:uint = 0;var node:Node = null;for (col = 2; col < xGridNum - 2; col++ ){for (row = 2; row < yGridNum-2; row++ ){node = Tlist[Index(col, row)] as Node;CalTnext(timeStep,node,col,row);node.T0=node.T;}}}public function CalTnext(timeStep:Number,node:Node,col:uint,row:uint):void{var conner:Boolean=false;var node_Adj:Node = null;var conductionHeat:Number = 0;//For Node on/in Connor or Edgevar SxFix:Number=1;//Area Fix Factor For Non-Interior Region in X Directionvar SyFix:Number=1;//Area Fix Factor For Non-Interior Region in Y Directionvar VolFix:Number=1;//Volume Fix Factor For Non-Interior Region in Y Directionif(((col==2)&&(row==2))||((col==2)&&(row==yGridNum-3))||((col==xGridNum-3)&&(row==2))||((col==xGridNum-3)&&(row==yGridNum-3))){SxFix=1/2.0;SyFix=1/2.0;conner=true;}if((col==2)||(col==xGridNum-3)){VolFix/=2;if(!conner){SyFix=1/2.0;}}if((row==2)||(row==yGridNum-3)){ VolFix/=2;if(!conner){SxFix=1/2.0;}}node_Adj = Tlist[Index(col+1, row)] as Node;conductionHeat+=node.eHeatExchangeFactor*(node_Adj.T0-node.T0)*Sx*SxFix;node_Adj = Tlist[Index(col-1, row)] as Node;conductionHeat+=node.wHeatExchangeFactor*(node_Adj.T0-node.T0)*Sx*SxFix;node_Adj = Tlist[Index(col, row+1)] as Node;conductionHeat+=node.nHeatExchangeFactor*(node_Adj.T0-node.T0)*Sy*SyFix;node_Adj = Tlist[Index(col, row - 1)] as Node;conductionHeat+=node.sHeatExchangeFactor*(node_Adj.T0-node.T0)*Sy*SyFix;var dT:Number = conductionHeat * timeStep;dT /= cellVol * VolFix * node.Rho * node.Cp;node.T = node.T0 + dT;}public function LatentHeatRelease(node:Node):void{}//Apply the Boundary Conditionpublic function ApplyBC():void{}private function Index(col:uint=0,row:uint=0):uint{return row * xGridNum + col;}}
}
因为自信,在呀呀学语时,我靠着纤嫩的双腿,迈出人生的第一步;因为自信,我一次次将第一名的奖状高高举起;因为自信,我毫不吝惜地剪掉飘逸的长发,在运动场上展现风采……感谢自信,它给了我一双翅膀,让我在电闪雷鸣中去飞翔,在风雨中去搏击人生!
简略吧,要需意注的是不同置位的节点其传热面积以及控制体体积不尽相同,要需Fix一下。这里给出开端的盘算结果(代迭100s的结果)。前目笔者没有贴出全部码代,这时按照笔者供提的序程是法无运行的,读者想一想,还点缺什么?
将其称对到得整个界面:
有点子样了,这还不是终究的盘算结果,凝结潜热还没有虑考进去,后续会补上。另外,我们没有离散偏微分方程,但是我们的方法和离散偏微分方程归同途殊的。或许读者可以解理无限差分和无限容积的连续与区别了。
文章结束给大家分享下程序员的一些笑话语录: 一个合格的程序员是不会写出 诸如 “摧毁地球” 这样的程序的,他们会写一个函数叫 “摧毁行星”而把地球当一个参数传进去。