FFMPEG下利用Intel VPP_QSV插件实现基于GPU的图像缩放和色彩空间转换 (二) - C++代码实现

本文主要是介绍FFMPEG下利用Intel VPP_QSV插件实现基于GPU的图像缩放和色彩空间转换 (二) - C++代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面一篇文章弄清楚了VPP_QSV插件的ffmpeg命令行命令,下面开始用C++代码实现VPP_QSV插件的C++代码实现。

 

C++使用滤镜的流程可以参考雷神的文章

最简单的基于FFmpeg的AVfilter的例子-纯净版

基本的流程如图

 

网上讨论FFMPEG硬件加速滤镜编程的文章不算太多,大概是基于GPU硬件的滤镜太依赖硬件导致用的人不多,所以大多数是讨论基于软件滤镜插件的实现方法和过程。硬件滤镜的实现的方法基本类似,但是有2个地方是不一样的。

  1. 硬件滤镜里分配frame buffer需要在显存里分配,所以涉及到要处理AVCodecContext结构体的2个硬件相关的成员变量 hw_device_ctx和hw_frames_ctx,需要按照要求把他们传给对应的filter
  2. 初始化滤镜的位置必须要在ffmpeg解出第一个视频帧以后才能初始化,因为qsv解码器是在第一次调用avcodec_send_packet()后开始解码video frame时才会用callback函数的方式在里面设置有效的hw_frames_ctx,这部分代码之后才能获取正确的hw_frames_ctx并把它传给滤镜的输入端"buffer"。

 

所以在使用Intel QSV硬件加速滤镜的流程就变成了 (Nvidia GPU的硬件加速滤镜流程和Intel的不一样,所以本文没有参考意义), 其中红色的模块为改动部分

 

流程中的关键函数如下所示:

get_format() 这个是QSV硬件解码时的回调函数,在这里初始化hw_frames_ctx, 一般在开始解码流时会被调用一次

init_filter()  这个在get_format()被调用后才能正常初始话,如果按照雷神的流程在程序开始就初始化会碰到各种各样的错误,怀疑vpp_qsv的初始话需要在qsv decoder初始化之后(个人猜的,代码实在太多了,看不下去)。

av_buffersrc_parameters_set(buffersrc_ctx, ...) 需要把qsv decoder的hw_frames_ctx传给buffersrc滤镜

 

整个代码修改自FFMPEG官方的例程https://github.com/FFmpeg/FFmpeg/blob/master/doc/examples/qsvdec.c

代码里vpp_qsv的设置

//不管原始视频分辨率是多少,一律缩放到1024x768
const char *filter_descr = "vpp_qsv=w=1024:h=768";

代码里主循环部分

//主循环部分,从码流里读一个frame的数据,decode_packet负责解码,如果解出了图像帧则got_frame为1/* actual decoding */while (ret >= 0) {ret = av_read_frame(input_ctx, &pkt);//std::cout << "read_frame" << std::endl;if (ret < 0)break;if (pkt.stream_index == video_st->index){//std::cout << "  -- video_frame" << std::endl;//ret = decode_packet(&decode, decoder_ctx, frame, sw_frame, &pkt, output_ctx);ret = decode_packet(decoder_ctx, frame, &got_frame, &pkt);if (got_frame){//第一次解出图像帧时会初始化一次滤镜if (!filter_ctx->initiallized) {//init buffer/buffersink and vpp filter hereret = init_filter(filter_ctx,filter_ctx->dec_ctx, filter_descr);if (ret < 0)return ret;}//pts is only used for encodingframe->pts = av_frame_get_best_effort_timestamp(frame);//直接显示decode_packet返回的frame, 这是解码器输出的nv12原始数据//display_qsv_frame(frame, sw_frame);ret = get_filtered_frame(frame, filt_frame);//显示滤镜输出的filt_frame,这是硬件做缩放后的nv12数据ret = display_qsv_frame(filt_frame, sw_frame);frm_counter++;av_frame_unref(frame);av_frame_unref(filt_frame);}//std::cout << "  -- frm_counter = " << frm_counter << std::endl;}else{std::cout << "  -------- other_frame" << std::endl;}av_packet_unref(&pkt);}

 

初始化滤镜函数

static int init_filter(FilteringContext* fctx, AVCodecContext *dec_ctx, const char *filter_spec)
{char args[512];int ret = 0;AVFilter *buffersrc = NULL;AVFilter *buffersink = NULL;AVFilterContext *buffersrc_ctx = NULL;AVFilterContext *buffersink_ctx = NULL;AVFilterInOut *outputs = avfilter_inout_alloc();AVFilterInOut *inputs = avfilter_inout_alloc();AVFilterGraph *filter_graph = avfilter_graph_alloc();if (!outputs || !inputs || !filter_graph) {ret = AVERROR(ENOMEM);goto end;}if (dec_ctx->codec_type == AVMEDIA_TYPE_VIDEO) {buffersrc = (AVFilter *)avfilter_get_by_name("buffer");buffersink = (AVFilter *)avfilter_get_by_name("buffersink");if (!buffersrc || !buffersink) {av_log(NULL, AV_LOG_ERROR, "filtering source or sink element not found\n");ret = AVERROR_UNKNOWN;goto end;}snprintf(args, sizeof(args),"video_size=%dx%d:pix_fmt=%d:time_base=%d/%d:pixel_aspect=%d/%d"":frame_rate=%d/%d",dec_ctx->width, dec_ctx->height, AV_PIX_FMT_QSV, // dec_ctx->pix_fmt,dec_ctx->time_base.num, dec_ctx->time_base.den,dec_ctx->sample_aspect_ratio.num,dec_ctx->sample_aspect_ratio.den,dec_ctx->framerate.num, dec_ctx->framerate.den);ret = avfilter_graph_create_filter(&buffersrc_ctx, buffersrc, "in",args, NULL, filter_graph);if (ret < 0) {av_log(NULL, AV_LOG_ERROR, "Cannot create buffer source\n");goto end;}//这里比初始化软件滤镜多的一步,将hw_frames_ctx传给buffersrc, 这样buffersrc就知道传给它的是硬件解码器,数据在显存内if (dec_ctx->hw_frames_ctx) {AVBufferSrcParameters *par = av_buffersrc_parameters_alloc();par->hw_frames_ctx = dec_ctx->hw_frames_ctx;ret = av_buffersrc_parameters_set(buffersrc_ctx, par);av_freep(&par);if (ret < 0)goto end;}ret = avfilter_graph_create_filter(&buffersink_ctx, buffersink, "out",NULL, NULL, filter_graph);if (ret < 0) {av_log(NULL, AV_LOG_ERROR, "Cannot create buffer sink\n");goto end;}}else {ret = AVERROR_UNKNOWN;goto end;}/* Endpoints for the filter graph. */outputs->name = av_strdup("in");outputs->filter_ctx = buffersrc_ctx;outputs->pad_idx = 0;outputs->next = NULL;inputs->name = av_strdup("out");inputs->filter_ctx = buffersink_ctx;inputs->pad_idx = 0;inputs->next = NULL;if (!outputs->name || !inputs->name) {ret = AVERROR(ENOMEM);goto end;}if ((ret = avfilter_graph_parse_ptr(filter_graph, filter_spec,&inputs, &outputs, NULL)) < 0)goto end;if ((ret = avfilter_graph_config(filter_graph, NULL)) < 0)goto end;/* Fill FilteringContext */fctx->buffersrc_ctx = buffersrc_ctx;fctx->buffersink_ctx = buffersink_ctx;fctx->filter_graph = filter_graph;fctx->initiallized = 1;end:avfilter_inout_free(&inputs);avfilter_inout_free(&outputs);return ret;
}

 

运行程序,可以看到不论视频文件分辨率是多少,显示的视频分辨率始终是1024x768, 此时可以看到GPU的占用率,说明解码和缩放都走的是Intel集成显卡硬件。对比传统的硬件解码后调用av_hwframe_transfer_data()读出原始视频数据后再用sws_scale()来做软件缩放并显示,在原始视频是高分辨率时性能提升明显,因为av_hwframe_transfer_data()读原始视频数据时占用了大量的CPU时间和资源, 而使用vpp_qsv滤镜缩放后,从GPU读出视频帧数据的分辨率始终为1024x768。 另外如果使用上篇文章里修改过的FFMPEG库,vpp_qsv还可以顺便把NV12数据转成RGB32, 这样CPU连YUV2RGB都可以省了,直接显示RGB32数据或者简单的把RGB32转成RGB24(NCHW)格式就可以丢给OpenVINO做基于CPU的推理了

 

最后完整项目奉上,仅供参考 https://gitee.com/tisandman/qsv_dec

这篇关于FFMPEG下利用Intel VPP_QSV插件实现基于GPU的图像缩放和色彩空间转换 (二) - C++代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/300999

相关文章

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法