FFMPEG下利用Intel VPP_QSV插件实现基于GPU的图像缩放和色彩空间转换 (二) - C++代码实现

本文主要是介绍FFMPEG下利用Intel VPP_QSV插件实现基于GPU的图像缩放和色彩空间转换 (二) - C++代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面一篇文章弄清楚了VPP_QSV插件的ffmpeg命令行命令,下面开始用C++代码实现VPP_QSV插件的C++代码实现。

 

C++使用滤镜的流程可以参考雷神的文章

最简单的基于FFmpeg的AVfilter的例子-纯净版

基本的流程如图

 

网上讨论FFMPEG硬件加速滤镜编程的文章不算太多,大概是基于GPU硬件的滤镜太依赖硬件导致用的人不多,所以大多数是讨论基于软件滤镜插件的实现方法和过程。硬件滤镜的实现的方法基本类似,但是有2个地方是不一样的。

  1. 硬件滤镜里分配frame buffer需要在显存里分配,所以涉及到要处理AVCodecContext结构体的2个硬件相关的成员变量 hw_device_ctx和hw_frames_ctx,需要按照要求把他们传给对应的filter
  2. 初始化滤镜的位置必须要在ffmpeg解出第一个视频帧以后才能初始化,因为qsv解码器是在第一次调用avcodec_send_packet()后开始解码video frame时才会用callback函数的方式在里面设置有效的hw_frames_ctx,这部分代码之后才能获取正确的hw_frames_ctx并把它传给滤镜的输入端"buffer"。

 

所以在使用Intel QSV硬件加速滤镜的流程就变成了 (Nvidia GPU的硬件加速滤镜流程和Intel的不一样,所以本文没有参考意义), 其中红色的模块为改动部分

 

流程中的关键函数如下所示:

get_format() 这个是QSV硬件解码时的回调函数,在这里初始化hw_frames_ctx, 一般在开始解码流时会被调用一次

init_filter()  这个在get_format()被调用后才能正常初始话,如果按照雷神的流程在程序开始就初始化会碰到各种各样的错误,怀疑vpp_qsv的初始话需要在qsv decoder初始化之后(个人猜的,代码实在太多了,看不下去)。

av_buffersrc_parameters_set(buffersrc_ctx, ...) 需要把qsv decoder的hw_frames_ctx传给buffersrc滤镜

 

整个代码修改自FFMPEG官方的例程https://github.com/FFmpeg/FFmpeg/blob/master/doc/examples/qsvdec.c

代码里vpp_qsv的设置

//不管原始视频分辨率是多少,一律缩放到1024x768
const char *filter_descr = "vpp_qsv=w=1024:h=768";

代码里主循环部分

//主循环部分,从码流里读一个frame的数据,decode_packet负责解码,如果解出了图像帧则got_frame为1/* actual decoding */while (ret >= 0) {ret = av_read_frame(input_ctx, &pkt);//std::cout << "read_frame" << std::endl;if (ret < 0)break;if (pkt.stream_index == video_st->index){//std::cout << "  -- video_frame" << std::endl;//ret = decode_packet(&decode, decoder_ctx, frame, sw_frame, &pkt, output_ctx);ret = decode_packet(decoder_ctx, frame, &got_frame, &pkt);if (got_frame){//第一次解出图像帧时会初始化一次滤镜if (!filter_ctx->initiallized) {//init buffer/buffersink and vpp filter hereret = init_filter(filter_ctx,filter_ctx->dec_ctx, filter_descr);if (ret < 0)return ret;}//pts is only used for encodingframe->pts = av_frame_get_best_effort_timestamp(frame);//直接显示decode_packet返回的frame, 这是解码器输出的nv12原始数据//display_qsv_frame(frame, sw_frame);ret = get_filtered_frame(frame, filt_frame);//显示滤镜输出的filt_frame,这是硬件做缩放后的nv12数据ret = display_qsv_frame(filt_frame, sw_frame);frm_counter++;av_frame_unref(frame);av_frame_unref(filt_frame);}//std::cout << "  -- frm_counter = " << frm_counter << std::endl;}else{std::cout << "  -------- other_frame" << std::endl;}av_packet_unref(&pkt);}

 

初始化滤镜函数

static int init_filter(FilteringContext* fctx, AVCodecContext *dec_ctx, const char *filter_spec)
{char args[512];int ret = 0;AVFilter *buffersrc = NULL;AVFilter *buffersink = NULL;AVFilterContext *buffersrc_ctx = NULL;AVFilterContext *buffersink_ctx = NULL;AVFilterInOut *outputs = avfilter_inout_alloc();AVFilterInOut *inputs = avfilter_inout_alloc();AVFilterGraph *filter_graph = avfilter_graph_alloc();if (!outputs || !inputs || !filter_graph) {ret = AVERROR(ENOMEM);goto end;}if (dec_ctx->codec_type == AVMEDIA_TYPE_VIDEO) {buffersrc = (AVFilter *)avfilter_get_by_name("buffer");buffersink = (AVFilter *)avfilter_get_by_name("buffersink");if (!buffersrc || !buffersink) {av_log(NULL, AV_LOG_ERROR, "filtering source or sink element not found\n");ret = AVERROR_UNKNOWN;goto end;}snprintf(args, sizeof(args),"video_size=%dx%d:pix_fmt=%d:time_base=%d/%d:pixel_aspect=%d/%d"":frame_rate=%d/%d",dec_ctx->width, dec_ctx->height, AV_PIX_FMT_QSV, // dec_ctx->pix_fmt,dec_ctx->time_base.num, dec_ctx->time_base.den,dec_ctx->sample_aspect_ratio.num,dec_ctx->sample_aspect_ratio.den,dec_ctx->framerate.num, dec_ctx->framerate.den);ret = avfilter_graph_create_filter(&buffersrc_ctx, buffersrc, "in",args, NULL, filter_graph);if (ret < 0) {av_log(NULL, AV_LOG_ERROR, "Cannot create buffer source\n");goto end;}//这里比初始化软件滤镜多的一步,将hw_frames_ctx传给buffersrc, 这样buffersrc就知道传给它的是硬件解码器,数据在显存内if (dec_ctx->hw_frames_ctx) {AVBufferSrcParameters *par = av_buffersrc_parameters_alloc();par->hw_frames_ctx = dec_ctx->hw_frames_ctx;ret = av_buffersrc_parameters_set(buffersrc_ctx, par);av_freep(&par);if (ret < 0)goto end;}ret = avfilter_graph_create_filter(&buffersink_ctx, buffersink, "out",NULL, NULL, filter_graph);if (ret < 0) {av_log(NULL, AV_LOG_ERROR, "Cannot create buffer sink\n");goto end;}}else {ret = AVERROR_UNKNOWN;goto end;}/* Endpoints for the filter graph. */outputs->name = av_strdup("in");outputs->filter_ctx = buffersrc_ctx;outputs->pad_idx = 0;outputs->next = NULL;inputs->name = av_strdup("out");inputs->filter_ctx = buffersink_ctx;inputs->pad_idx = 0;inputs->next = NULL;if (!outputs->name || !inputs->name) {ret = AVERROR(ENOMEM);goto end;}if ((ret = avfilter_graph_parse_ptr(filter_graph, filter_spec,&inputs, &outputs, NULL)) < 0)goto end;if ((ret = avfilter_graph_config(filter_graph, NULL)) < 0)goto end;/* Fill FilteringContext */fctx->buffersrc_ctx = buffersrc_ctx;fctx->buffersink_ctx = buffersink_ctx;fctx->filter_graph = filter_graph;fctx->initiallized = 1;end:avfilter_inout_free(&inputs);avfilter_inout_free(&outputs);return ret;
}

 

运行程序,可以看到不论视频文件分辨率是多少,显示的视频分辨率始终是1024x768, 此时可以看到GPU的占用率,说明解码和缩放都走的是Intel集成显卡硬件。对比传统的硬件解码后调用av_hwframe_transfer_data()读出原始视频数据后再用sws_scale()来做软件缩放并显示,在原始视频是高分辨率时性能提升明显,因为av_hwframe_transfer_data()读原始视频数据时占用了大量的CPU时间和资源, 而使用vpp_qsv滤镜缩放后,从GPU读出视频帧数据的分辨率始终为1024x768。 另外如果使用上篇文章里修改过的FFMPEG库,vpp_qsv还可以顺便把NV12数据转成RGB32, 这样CPU连YUV2RGB都可以省了,直接显示RGB32数据或者简单的把RGB32转成RGB24(NCHW)格式就可以丢给OpenVINO做基于CPU的推理了

 

最后完整项目奉上,仅供参考 https://gitee.com/tisandman/qsv_dec

这篇关于FFMPEG下利用Intel VPP_QSV插件实现基于GPU的图像缩放和色彩空间转换 (二) - C++代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/300999

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭