数据结构中常见的树(二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

2023-10-28 11:48

本文主要是介绍数据结构中常见的树(二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BST

       即二叉搜索树:

       1.所有非叶子结点至多拥有两个儿子(LeftRight);

       2.所有结点存储一个关键字;

       3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

       如:

       

       BST树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;

否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入

右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;

       如果BST树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B

的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变BST树结构

插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;

       如:

      

   BST树在经过多次插入与删除后,有可能导致不同的结构:

   右边也是一个BST树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的

树结构索引;所以,使用BST树还要考虑尽可能让BST树保持左图的结构,和避免右图的结构,也就

是所谓的“平衡”问题;      

       
AVL平衡二叉搜索
定义:平衡二叉树或为空树,或为如下性质的二叉排序树:
  (1)左右子树深度之差的绝对值不超过1;
  (2)左右子树仍然为平衡二叉树.
平衡因子BF=左子树深度-右子树深度.
平衡二叉树每个结点的平衡因子只能是1,0,-1。若其绝对值超过1,则该二叉排序树就是不平衡的。
如图所示为平衡树和非平衡树示意图:



 

RBT 红黑树

AVL是严格平衡树,因此在增加或者删除节点的时候,根据不同情况,旋转的次数比红黑树要多;
红黑是弱平衡的,用非严格的平衡来换取增删节点时候旋转次数的降低;
所以简单说,搜索的次数远远大于插入和删除,那么选择AVL树,如果搜索,插入删除次数几乎差不多,应该选择RB树。

红黑树上每个结点内含五个域,color,key,left,right,p。如果相应的指针域没有,则设为NIL。
一般的,红黑树,满足以下性质,即只有满足以下全部性质的树,我们才称之为红黑树:
1)每个结点要么是红的,要么是黑的。
2)根结点是黑的。
3)每个叶结点,即空结点(NIL)是黑的。
4)如果一个结点是红的,那么它的俩个儿子都是黑的。
5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。
下图所示,即是一颗红黑树:






 

B-

       是一种平衡多路搜索树(并不是二叉的):

       1.定义任意非叶子结点最多只有M个儿子;且M>2

       2.根结点的儿子数为[2, M]

       3.除根结点以外的非叶子结点的儿子数为[M/2, M]

       4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

       5.非叶子结点的关键字个数=指向儿子的指针个数-1

       6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1]

       7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]

子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

       8.所有叶子结点位于同一层;

       如:(M=3

       B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果

命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为

空,或已经是叶子结点;

B-树的特性:

       1.关键字集合分布在整颗树中;

       2.任何一个关键字出现且只出现在一个结点中;

       3.搜索有可能在非叶子结点结束;

       4.其搜索性能等价于在关键字全集内做一次二分查找;

       5.自动层次控制;

       由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少

利用率,其最底搜索性能为:

    

       其中,M为设定的非叶子结点最多子树个数,N为关键字总数;

       所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;

       由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占

M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

 

 

B+

       B+树是B-树的变体,也是一种多路搜索树:

       1.其定义基本与B-树同,除了:

       2.非叶子结点的子树指针与关键字个数相同;

       3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树

B-树是开区间);

       5.为所有叶子结点增加一个链指针;

       6.所有关键字都在叶子结点出现;

       如:(M=3

   B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在

非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

       B+的特性:

       1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好

是有序的;

       2.不可能在非叶子结点命中;

       3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储

(关键字)数据的数据层;

       4.更适合文件索引系统;比如对已经建立索引的数据库记录,查找10<=id<=20,那么只要通过根节点搜索到id=10的叶节点,之后只要根据叶节点的链表找到第一个大于20的就行了,比B-树在查找10到20内的每一个时每次都从根节点出发查找提高了不少效率。

  

B*

       B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

   B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3

(代替B+树的1/2);

       B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据

复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父

结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

       B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分

数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字

(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之

间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

       所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

  

小结

       B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于

走右结点;

       B-树:多路搜索树,每个结点存储M/2M个关键字,非叶子结点存储指向关键

字范围的子结点;

       所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

       B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点

中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;

       B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率

1/2提高到2/3


B+/B*Tree应用

数据库索引--索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。



数据库索引--表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键。



倒排索引--也可以由B树及其变种实现但不一定非要B树及其变种实现,如lucene没有使用B树结构,因此lucene可以用二分搜索算法快速定位关键词实现时,lucene将下面三列分别作为词典文件(Term Dictionary)、频率文件(frequencies)、位置文件 (positions)保存。其中词典文件不仅保存有每个关键词,还保留了指向频率文件和位置文件的指针,通过指针可以找到该关键字的频率信息和位置信息。   

[java]  view plain copy
  1. 关键词            文章号[出现频率]              出现位置     
  2. guangzhou           1[2]                      36     
  3. he                  2[1]                      1     
  4. i                   1[1]                      4     
  5. live                1[2]                      25,   
  6.                     2[1]                      2     
  7. shanghai            2[1]                      3     
  8. tom                 1[1]                      1  


参考文章

B-树和B+树的应用:数据搜索和数据库索引 http://blog.csdn.net/hguisu/article/details/7786014

B树、B-树、B+树、B*树 http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html

这篇关于数据结构中常见的树(二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/293000

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允

C#多线程编程中导致死锁的常见陷阱和避免方法

《C#多线程编程中导致死锁的常见陷阱和避免方法》在C#多线程编程中,死锁(Deadlock)是一种常见的、令人头疼的错误,死锁通常发生在多个线程试图获取多个资源的锁时,导致相互等待对方释放资源,最终形... 目录引言1. 什么是死锁?死锁的典型条件:2. 导致死锁的常见原因2.1 锁的顺序问题错误示例:不同

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Spring常见错误之Web嵌套对象校验失效解决办法

《Spring常见错误之Web嵌套对象校验失效解决办法》:本文主要介绍Spring常见错误之Web嵌套对象校验失效解决的相关资料,通过在Phone对象上添加@Valid注解,问题得以解决,需要的朋... 目录问题复现案例解析问题修正总结  问题复现当开发一个学籍管理系统时,我们会提供了一个 API 接口去

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

C# ComboBox下拉框实现搜索方式

《C#ComboBox下拉框实现搜索方式》文章介绍了如何在加载窗口时实现一个功能,并在ComboBox下拉框中添加键盘事件以实现搜索功能,由于数据不方便公开,作者表示理解并希望得到大家的指教... 目录C# ComboBox下拉框实现搜索步骤一步骤二步骤三总结C# ComboBox下拉框实现搜索步骤一这