深度学习中所使用的优化方法综述,包括SGD,Adagrad,Momentum,Adadelta等

本文主要是介绍深度学习中所使用的优化方法综述,包括SGD,Adagrad,Momentum,Adadelta等,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:
本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式可以去认真啃论文了。话不多说,直接上图!!!
本文转载自:https://zhuanlan.zhihu.com/p/22252270

在这里插入图片描述

SGD

SGD英文全称为mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了。现在的SGD一般都指mini-batch gradient descent。

SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Momentum
momentum是模拟物理里动量的概念,积累之前的动量来替代真正的梯度。公式如下:

在这里插入图片描述

Nesterov
nesterov项在梯度更新时做一个校正,避免前进太快,同时提高灵敏度。将上一节中的公式展开可得:

在这里插入图片描述

momentum首先计算一个梯度(短的蓝色向量),然后在加速更新梯度的方向进行一个大的跳跃(长的蓝色向量),nesterov项首先在之前加速的梯度方向进行一个大的跳跃(棕色向量),计算梯度然后进行校正(绿色梯向量)

其实,momentum项和nesterov项都是为了使梯度更新更加灵活,对不同情况有针对性。但是,人工设置一些学习率总还是有些生硬,接下来介绍几种自适应学习率的方法

在这里插入图片描述
在这里插入图片描述

特点:

  • 训练初中期,加速效果不错,很快
  • 训练后期,反复在局部最小值附近抖动

在这里插入图片描述
在这里插入图片描述
特点:

  • 结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
  • 对内存需求较小
  • 为不同的参数计算不同的自适应学习率
    也适用于大多非凸优化 - 适用于大数据集和高维空间

Adamax
Adamax是Adam的一种变体,此方法对学习率的上限提供了一个更简单的范围。公式上的变化如下:

在这里插入图片描述

经验之谈

  • 对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值
  • SGD通常训练时间更长,但是在好的初始化和学习率调度方案的情况下,结果更可靠
  • 如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。
  • Adadelta,RMSprop,Adam是比较相近的算法,在相似的情况下表现差不多。
  • 在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果

最后展示两张可厉害的图,一切尽在图中啊!

在这里插入图片描述

损失平面等高线

在这里插入图片描述

在鞍点处的比较

引用

[1]Adagrad

[2]RMSprop[Lecture 6e]

[3]Adadelta

[4]Adam

[5]Nadam

[6]On the importance of initialization and momentum in deep learning

[7]Keras中文文档

[8]Alec Radford

[9]An overview of gradient descent optimization algorithms

[10]Gradient Descent Only Converges to Minimizers

[11] Deep Learning:Nature

这篇关于深度学习中所使用的优化方法综述,包括SGD,Adagrad,Momentum,Adadelta等的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/291235

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java