基于相关系数法的近红外光谱波长选择用于玉米数据集的含量检测

本文主要是介绍基于相关系数法的近红外光谱波长选择用于玉米数据集的含量检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 前言

        在近红外光谱数据分析建模过程中,特征选择是其中关键的一步。特征选择的原因是全部样本信息(全波长)中存在冗余信息,使得有些有效信息被抵消同时也无法突出有用的信息,这样建立的分析模型准确度和可靠性不高且计算量较大,特征选择就是最大限度的筛选出光谱数据中的有效信息,使得筛选出来的这些信息可以代表全部的样本信息,这样筛选出来的就是特征波长。本文主要介绍采用相关系数法筛选玉米数据集的特征波长,并与全波长建模结果进行对比。

相关系数法

      皮尔逊相关系数是描述 个定距变量间联系紧密程度, 衡量变量 之间的线性相关关系的 参数, 其值介于 -1 之间 一般用 表示 计 算公式见式 ( )。见参考文献【1】

数据来源

       对网上公开的玉米数据集进行分析,下载网址可参见博客玉米数据集

       数据集中包含有 3台不同的光谱仪测量得到的近红外光谱,每台仪器测量的光谱数据波长范围为1100~2498nm,波长间隔为 2nm,共 700 个波长点。

图1 玉米数据光谱 

基于PLS的的玉米数据集含量检测

clc
clearload('corn_m51.mat')
X;                      %光谱
y;                      %含量% figure
% plot(1101:2:2500, X(:, 1:length(X)));
% xlabel('Wavelength/nm','FontName','Times New Roman','FontSize',8);
% ylabel('Absorbance','FontName','Times New Roman','FontSize',8);
% set(gca,'FontName','Times New Roman','FontSize',8);% X =  nirSNV(X);ratio = 0.7;            % 训练集占70%  
[mx, nx] = size(X);
mtrain = ceil(mx * ratio);
mtest = mx - mtrain;
[Xtrain, Xtest, Ytrain, Ytest] = ks(X,y,ceil(mx*ratio));[Rc,RMSEC,beta,yc] = fitaaa(Xtrain, Ytrain);
[Rp,RMSEP,yp] = fitbbb(Xtest,Ytest,beta);

以上,Rc,Rp分别为校正相关系数和预测相关系数;RMSEC,RMSEP分别为校正均方根误差和校正均方根误差。

结果如下

基于相关系数法的近红外光谱含量检测模型

        运用相关系数法筛选光谱值和含量值之间相关性较大的样本,建立PLS含量检测模型。

代码如下:

load('corn_m51.mat')
X;                      %光谱
y;                      %含量% figure
% plot(1101:2:2500, X(:, 1:length(X)));
% xlabel('Wavelength/nm','FontName','Times New Roman','FontSize',8);
% ylabel('Absorbance','FontName','Times New Roman','FontSize',8);
% set(gca,'FontName','Times New Roman','FontSize',8);% X =  nirSNV(X);ratio = 0.7;            % 训练集占70%  
[mx, nx] = size(X);
mtrain = ceil(mx * ratio);
mtest = mx - mtrain;
[Xtrain, Xtest, Ytrain, Ytest] = ks(X,y,ceil(mx*ratio));%% 采用相关系数选择特征波长再建模
rt = CA(Xtrain, Ytrain);
max_rt = max(rt);
min_rt = min(rt);[Rc_,RMSEC_,Rp_,RMSEP_,selectedBands] = CA_get_i(Xtrain, Ytrain, Xtest, Ytest,min_rt, max_rt, 0.001);

以上,Rc_,Rp_分别为校正相关系数和预测相关系数;RMSEC_,RMSEP_分别为校正均方根误差和校正均方根误差。

结果如下:

 选用PLS建模和先进行相关系数法波长选择再PLS建模的结果对比

 

总结

        本文选用的模型评价指标为校正相关系数(Rc,Rc_)、预测相关性数(Rp、Rp_)、校正均方根误差(RMSCE,RMSEC_)和预测均方根误差(RMSEP,RMSEP_)。相关系数用于反映变量直接相关系数密切程度的统计指标。RMSEP用于衡量预测值与真实值之间的偏差。RMSEP值越小,相关系数越大,则模型的预测能力越好。

       相比于直接选用全波长进行建模,相关系数法选用波长后建模的Rp从0.9952上升到0.9969,RMSEP从0.0308下降到0.0246,选择的变量从全波长的700减少到587。说明相关系数法可有效选择光谱与含量之间相关性更好的样本,减少冗余变量,提高模型的精度。

完整代码可从GitHubhttps://github.com/cainnyk/CSDV_corPLS下载​​​​​​​

参考文献【1】倪超,李振业,张雄,赵岭,朱婷婷,蒋雪松.基于短波近红外高光谱和深度学习的籽棉地膜分选算法[J].农业机械学报,2019,50(12):170-179.

这篇关于基于相关系数法的近红外光谱波长选择用于玉米数据集的含量检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/291160

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro