基于相关系数法的近红外光谱波长选择用于玉米数据集的含量检测

本文主要是介绍基于相关系数法的近红外光谱波长选择用于玉米数据集的含量检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 前言

        在近红外光谱数据分析建模过程中,特征选择是其中关键的一步。特征选择的原因是全部样本信息(全波长)中存在冗余信息,使得有些有效信息被抵消同时也无法突出有用的信息,这样建立的分析模型准确度和可靠性不高且计算量较大,特征选择就是最大限度的筛选出光谱数据中的有效信息,使得筛选出来的这些信息可以代表全部的样本信息,这样筛选出来的就是特征波长。本文主要介绍采用相关系数法筛选玉米数据集的特征波长,并与全波长建模结果进行对比。

相关系数法

      皮尔逊相关系数是描述 个定距变量间联系紧密程度, 衡量变量 之间的线性相关关系的 参数, 其值介于 -1 之间 一般用 表示 计 算公式见式 ( )。见参考文献【1】

数据来源

       对网上公开的玉米数据集进行分析,下载网址可参见博客玉米数据集

       数据集中包含有 3台不同的光谱仪测量得到的近红外光谱,每台仪器测量的光谱数据波长范围为1100~2498nm,波长间隔为 2nm,共 700 个波长点。

图1 玉米数据光谱 

基于PLS的的玉米数据集含量检测

clc
clearload('corn_m51.mat')
X;                      %光谱
y;                      %含量% figure
% plot(1101:2:2500, X(:, 1:length(X)));
% xlabel('Wavelength/nm','FontName','Times New Roman','FontSize',8);
% ylabel('Absorbance','FontName','Times New Roman','FontSize',8);
% set(gca,'FontName','Times New Roman','FontSize',8);% X =  nirSNV(X);ratio = 0.7;            % 训练集占70%  
[mx, nx] = size(X);
mtrain = ceil(mx * ratio);
mtest = mx - mtrain;
[Xtrain, Xtest, Ytrain, Ytest] = ks(X,y,ceil(mx*ratio));[Rc,RMSEC,beta,yc] = fitaaa(Xtrain, Ytrain);
[Rp,RMSEP,yp] = fitbbb(Xtest,Ytest,beta);

以上,Rc,Rp分别为校正相关系数和预测相关系数;RMSEC,RMSEP分别为校正均方根误差和校正均方根误差。

结果如下

基于相关系数法的近红外光谱含量检测模型

        运用相关系数法筛选光谱值和含量值之间相关性较大的样本,建立PLS含量检测模型。

代码如下:

load('corn_m51.mat')
X;                      %光谱
y;                      %含量% figure
% plot(1101:2:2500, X(:, 1:length(X)));
% xlabel('Wavelength/nm','FontName','Times New Roman','FontSize',8);
% ylabel('Absorbance','FontName','Times New Roman','FontSize',8);
% set(gca,'FontName','Times New Roman','FontSize',8);% X =  nirSNV(X);ratio = 0.7;            % 训练集占70%  
[mx, nx] = size(X);
mtrain = ceil(mx * ratio);
mtest = mx - mtrain;
[Xtrain, Xtest, Ytrain, Ytest] = ks(X,y,ceil(mx*ratio));%% 采用相关系数选择特征波长再建模
rt = CA(Xtrain, Ytrain);
max_rt = max(rt);
min_rt = min(rt);[Rc_,RMSEC_,Rp_,RMSEP_,selectedBands] = CA_get_i(Xtrain, Ytrain, Xtest, Ytest,min_rt, max_rt, 0.001);

以上,Rc_,Rp_分别为校正相关系数和预测相关系数;RMSEC_,RMSEP_分别为校正均方根误差和校正均方根误差。

结果如下:

 选用PLS建模和先进行相关系数法波长选择再PLS建模的结果对比

 

总结

        本文选用的模型评价指标为校正相关系数(Rc,Rc_)、预测相关性数(Rp、Rp_)、校正均方根误差(RMSCE,RMSEC_)和预测均方根误差(RMSEP,RMSEP_)。相关系数用于反映变量直接相关系数密切程度的统计指标。RMSEP用于衡量预测值与真实值之间的偏差。RMSEP值越小,相关系数越大,则模型的预测能力越好。

       相比于直接选用全波长进行建模,相关系数法选用波长后建模的Rp从0.9952上升到0.9969,RMSEP从0.0308下降到0.0246,选择的变量从全波长的700减少到587。说明相关系数法可有效选择光谱与含量之间相关性更好的样本,减少冗余变量,提高模型的精度。

完整代码可从GitHubhttps://github.com/cainnyk/CSDV_corPLS下载​​​​​​​

参考文献【1】倪超,李振业,张雄,赵岭,朱婷婷,蒋雪松.基于短波近红外高光谱和深度学习的籽棉地膜分选算法[J].农业机械学报,2019,50(12):170-179.

这篇关于基于相关系数法的近红外光谱波长选择用于玉米数据集的含量检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/291160

相关文章

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.

MySQL使用binlog2sql工具实现在线恢复数据功能

《MySQL使用binlog2sql工具实现在线恢复数据功能》binlog2sql是大众点评开源的一款用于解析MySQLbinlog的工具,根据不同选项,可以得到原始SQL、回滚SQL等,下面我们就来... 目录背景目标步骤准备工作恢复数据结果验证结论背景生产数据库执行 SQL 脚本,一般会经过正规的审批

kotlin中的数据转换方法(示例详解)

《kotlin中的数据转换方法(示例详解)》这篇文章介绍了Kotlin中将数字转换为字符串和字符串转换为数字的多种方法,包括使用`toString()`、字符串模板、格式化字符串、处理可空类型等,同时... 目录1. 直接使用 toString() 方法2. 字符串模板(自动转换)3. 格式化字符串(控制输