线性代数中涉及到的matlab命令-第三章:矩阵的初等变换及线性方程组

本文主要是介绍线性代数中涉及到的matlab命令-第三章:矩阵的初等变换及线性方程组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1,矩阵的初等变换

1.1,初等变换

1.2,增广矩阵 

​1.3,定义和性质

1.4,行阶梯型矩阵、行最简型矩阵

1.5,标准形矩阵 

1.6,矩阵初等变换的性质 

2,矩阵的秩 

3,线性方程组的解 


1,矩阵的初等变换

1.1,初等变换

初等变换包括三种:交换行或列、某行或列乘以一个非零系数、某行或列加上零一行或列的k倍。

1.2,增广矩阵 

 增广矩阵:方程组的系数矩阵和常数矩阵组成的矩阵。

方程组:

对应的增广矩阵:

1.3,定义和性质

矩阵的初等行变换和初等列变换,统称为初等变换。

待补充:

使用Matlab判断两个矩阵是否等价。

1.4,行阶梯型矩阵、行最简型矩阵

 

对于任何矩阵,都可以通过有限次初等行变换把它变为行阶梯型矩阵和行最简型矩阵。

利用初等行变换,把一个矩阵化为行阶梯形矩阵和行最简形矩阵,是一种很重要的运算,解线性方程组只需要把增广矩阵化为行最简形矩阵。

Matlab使用rref命令可以得到一个矩阵的行最简形矩阵:

clc;A = [4 2 -1 2;5 2 3 1;11 3 0 8];rref(A)

运行结果:

1.5,标准形矩阵 

1.6,矩阵初等变换的性质 

定义:由单位阵E经过一次初等变换得到的矩阵称为初等矩阵。

三种初等变换对应三种初等矩阵。

第一种:把初等矩阵(单位矩阵两行对调)乘矩阵A,相当于对矩阵A进行初等行变换或列变换(对应的两行或列对调);

clc;A = [1 1 1 1;2 2 2 2;3 3 3 3]E = eye(3);E1_2 = E;
E1_2(1,:) = E(2,:);
E1_2(2,:) = E(1,:);E1_2E1_2*A

运行结果:

上述代码,如果改为右乘初等矩阵,结果为第1列和第2列对调:

clc;A = [1 2 3 4;1 2 3 4;1 2 3 4]E = eye(4);E1_2 = E;
E1_2(1,:) = E(2,:);
E1_2(2,:) = E(1,:);E1_2A*E1_2

运行结果:

类似,其他两种初等矩阵乘以矩阵A,相当于对矩阵A做对应的初等变换。

问题:

clc;%举例说明E  = eye(5);E_23 = E;
E_23(2,:) = E(3,:);
E_23(3,:) = E(2,:);   %交换单位矩阵E的2和3行,得到一个初等矩阵A = E_23*E;           %E_23*E相当于对单位矩阵E进行了一次初等变化(交换2和3行)得到一个矩阵AB = E_23*A           %E_23*A相当于对单位矩阵A进行了一次初等变化(再次交换2和3行)得到一个矩阵B,其实B就是E%  B = E_23*A = B = E_23*E_23*E = E  即E_23*E_23 = E,则E_23的逆等于E_23

运行结果:

B =1     0     0     0     00     1     0     0     00     0     1     0     00     0     0     1     00     0     0     0     1

运行代码发现B还是单位矩阵,即B = E_23*A =  E_23*E_23*E = E 即E_23*E_23 = E,则E_23的逆等于E_23,也就是交换行的初等矩阵,它的逆还是它本身。 

初等变换得到一个初等矩阵,初等变换的逆变换得到初等矩阵的逆矩阵。 

矩阵A可逆,可通过的方式求A,因其可转化为

Matlab种使用rref命令可对上述矩阵A和E组成的矩阵转化,将矩阵A对应元素转化为单位阵E,对应的单位矩阵E就变为矩阵A的逆矩阵:

clc;A = [2 -1 -1;1 1 -2;4 -6 5];det(A);            %判断A是否有逆矩阵E = eye(3);B = [A,E]rref(B)

运行结果:

也可使用rref命令求方程组的解:

clc;A = [2 -1 -1;1 1 -2;4 -6 5];b = [4;2;6];B = [A,b]rref(B)

运行结果:

2,矩阵的秩 

矩阵k阶子式的概念:

 矩阵秩的概念:

矩阵A的秩,A的行阶梯形种非零行的个数。 矩阵的秩用R表示。

如果矩阵A~B,则矩阵A的秩R(A) = R(B),具体证明可在参考书种找到。

Matlab中计算矩阵的秩的命令为rank。

以下代码中矩阵A经过三种行变换后得到矩阵A12,R(A)=R(A12):

clc;A = [1 3 5 2;2 6 9 0;2 4 1 7]A12 = A;A12(1,:) = A(2,:);
A12(2,:) = A(1,:);        %A12为A经过一次行变换后得到,A~A12k = 2;
A12(1,:) = k*A12(1,:);    %A12第一行元素乘以kA12(2,:) = A12(2,:) + A12(3,:)  %A12第二行元素+第三行元素rank_A = rank(A)rank_A12 = rank(A12)                 %矩阵A经过三种行变换后的矩阵,他们的秩相同即 A~A12

运行结果:

3,线性方程组的解 

对于方程组,可通过系数矩阵的秩和增广矩阵的秩判断方程组是否有唯一解,以下代码为判断逻辑:

clc;A = [1 -2 2 -1;2 -4 8 0;-2 4 -2 3;3 -6 0 -6]          %系数矩阵b = [1;2;3;4];           %常数矩阵M = rref([A,b])rank(A)rank([A,b])

运行结果,系数矩阵的秩和增广矩阵的秩不相等:

很明显增广矩阵的行阶梯形矩阵的第三行是矛盾方程 0 = 1。 

这篇关于线性代数中涉及到的matlab命令-第三章:矩阵的初等变换及线性方程组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/285435

相关文章

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

30常用 Maven 命令

Maven 是一个强大的项目管理和构建工具,它广泛用于 Java 项目的依赖管理、构建流程和插件集成。Maven 的命令行工具提供了大量的命令来帮助开发人员管理项目的生命周期、依赖和插件。以下是 常用 Maven 命令的使用场景及其详细解释。 1. mvn clean 使用场景:清理项目的生成目录,通常用于删除项目中自动生成的文件(如 target/ 目录)。共性规律:清理操作

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

matlab读取NC文件(含group)

matlab读取NC文件(含group): NC文件数据结构: 代码: % 打开 NetCDF 文件filename = 'your_file.nc'; % 替换为你的文件名% 使用 netcdf.open 函数打开文件ncid = netcdf.open(filename, 'NC_NOWRITE');% 查看文件中的组% 假设我们想读取名为 "group1" 的组groupName

利用命令模式构建高效的手游后端架构

在现代手游开发中,后端架构的设计对于支持高并发、快速迭代和复杂游戏逻辑至关重要。命令模式作为一种行为设计模式,可以有效地解耦请求的发起者与接收者,提升系统的可维护性和扩展性。本文将深入探讨如何利用命令模式构建一个强大且灵活的手游后端架构。 1. 命令模式的概念与优势 命令模式通过将请求封装为对象,使得请求的发起者和接收者之间的耦合度降低。这种模式的主要优势包括: 解耦请求发起者与处理者

linux 判断某个命令是否安装

linux 判断某个命令是否安装 if ! [ -x "$(command -v git)" ]; thenecho 'Error: git is not installed.' >&2exit 1fi

jenkins 插件执行shell命令时,提示“Command not found”处理方法

首先提示找不到“Command not found,可能我们第一反应是查看目标机器是否已支持该命令,不过如果相信能找到这里来的朋友估计遇到的跟我一样,其实目标机器是没有问题的通过一些远程工具执行shell命令是可以执行。奇怪的就是通过jenkinsSSH插件无法执行,经一番折腾各种搜索发现是jenkins没有加载/etc/profile导致。 【解决办法】: 需要在jenkins调用shell脚

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87