点分治维护dp+连通块上新型dp思路+乘积方面进行根号dp:0922T4

2023-10-25 14:10

本文主要是介绍点分治维护dp+连通块上新型dp思路+乘积方面进行根号dp:0922T4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先连通块,所以点分治肯定是

Trick1 钦定选根的连通块dp

对于钦定选根的连通块dp,有一种常见思路

先对原树求其dfn序,按dfn序倒序求解

具体的,对于当前点 i i i(注意这里都是指dfn序),我们可以钦定 i i i 是否选

如果 i i i 选,就由 i + 1 i+1 i+1,也就是 i i i 的第一个儿子转移过来(因为只有他选他子树才可能被选)

如果 i i i 不选,就由 i + w i i+w_i i+wi 转移过来,因为他的儿子必然不会被选

至于 i i i i + w i i+w_i i+wi 同时选的情况,我们在 i + 1 i+1 i+1 那里已经算了

对于 i i i i + w i i+w_i i+wi 是否连通的问题,当他们的lca都被选时,则他们必然也被选,这里一定会在他们祖先那里被算到

在这里插入图片描述

Trick 2 对于乘积类dp的根号优化方法

考虑直接 d p [ x ] [ i ] dp[x][i] dp[x][i] i i i 值域过大。

但我们可以拆分 f ( x , i ) , g ( x , i ) f(x,i),g(x,i) f(x,i),g(x,i),代表已选乘积为 i i i / 还可以选乘积为 i i i 的方案数

这样状态直接压成 O ( m ) O(\sqrt m) O(m )

其实也可以用整除分块的证明进行预处理

#include<bits/stdc++.h>
using namespace std;
#define int long long
inline int read(){int x=0,f=1;char ch=getchar(); while(ch<'0'||
ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}return x*f;}
#define Z(x) (x)*(x)
#define pb push_back
//mt19937 rand(time(0));
//mt19937_64 rand(time(0));
//srand(time(0));
#define N 4010
#define M 1510
#define mo (int)(1e9+7)
int n, m, i, j, k, T;
int Rt, rt, f[N][M], g[N][M]; 
int mx[N], w[N], dfn[N], tot, sum,  u, v; 
int sq, p[N], v1, v2, a[N], ans; 
vector<int>G[N]; void dfs(int x, int fa) {w[x]=mx[x]=1; for(int y : G[x]) {if(y==fa || p[y]) continue; dfs(y, x); w[x]+=w[y]; mx[x]=max(mx[x], w[y]); }mx[x]=max(mx[x], sum-w[x]); if(mx[x]<mx[rt]) rt=x; 
}void dfs2(int x, int fa) {dfn[++tot]=x;  for(int y: G[x]) if(y!=fa && !p[y]) dfs2(y, x); 
}void Add(int &a, int b) {a=(a+b)%mo; 
}void dfz(int x) {
//	printf("> %lld\n", x); int i, j, u; tot=0; dfs(x, 0); dfs2(x, 0); 
//	for(i=1; i<=tot; ++i) printf("%lld ", dfn[i]); printf("\n"); for(i=0; i<=tot+5; ++i)for(j=0; j<=sq+5; ++j) f[i][j]=g[i][j]=0; 
//	f[tot+1][1]=1; for(i=tot; i>=1; --i) {u=dfn[i]; if(a[u]>sq) Add(g[i][m/a[u]], 1); else Add(f[i][a[u]], 1); for(j=1; j<=sq; ++j) {v1=i+1; v2=i+w[u]; if(j*a[u]>sq && j*a[u]<=m) Add(g[i][m/(j*a[u])], f[v1][j]); else if(j*a[u]<=m) Add(f[i][j*a[u]], f[v1][j]); if(j>=a[u]) Add(g[i][j/a[u]], g[v1][j]); 
//			
//			
//			Add(f[i][j], f[v2][j]); Add(g[i][j], g[v2][j]); }}for(i=1; i<=sq; ++i) Add(ans, f[1][i]+g[1][i]); //	printf("# %lld : %lld\n", x, ans); dfs(x, 0); p[x]=1; for(int y : G[x]) if(!p[y]) {dfs(y, x); sum=w[y]; mx[rt=0]=1e9; dfs(y, x); dfz(rt); }
}signed main()
{
//	freopen("in.txt", "r", stdin);
//	freopen("out.txt", "w", stdout);freopen("fn.in", "r", stdin);freopen("fn.out", "w", stdout);
//	T=read();
//	while(T--) {
//
//	}n=read(); m=read(); sq=sqrt(m); 
//	printf("# %lld\n", sq); for(i=1; i<=n; ++i) a[i]=read(); for(i=1; i<n; ++i) {u=read(); v=read(); G[u].pb(v); G[v].pb(u); }sum=n; mx[rt=0]=1e9; dfs(1, 0); Rt=rt; 
//	printf("%lld\n", rt); dfz(rt);printf("%lld", (ans%mo+mo)%mo); return 0;
}

这篇关于点分治维护dp+连通块上新型dp思路+乘积方面进行根号dp:0922T4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/283110

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

python安装完成后可以进行的后续步骤和注意事项小结

《python安装完成后可以进行的后续步骤和注意事项小结》本文详细介绍了安装Python3后的后续步骤,包括验证安装、配置环境、安装包、创建和运行脚本,以及使用虚拟环境,还强调了注意事项,如系统更新、... 目录验证安装配置环境(可选)安装python包创建和运行Python脚本虚拟环境(可选)注意事项安装

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、