2017年亚太杯APMCM数学建模大赛B题喷雾轨迹规划问题求解全过程文档及程序

本文主要是介绍2017年亚太杯APMCM数学建模大赛B题喷雾轨迹规划问题求解全过程文档及程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2017年亚太杯APMCM数学建模大赛

B题 喷雾轨迹规划问题

原题再现

  喷釉工艺用喷釉枪或喷釉机在压缩空气下将釉喷入雾中,使釉附着在泥体上。这是陶瓷生产过程中一个容易实现自动化的过程。由于不均匀的釉料在烧制过程中会产生裂纹,导致工件报废,因此要求喷涂过程中喷涂的釉料厚度尽可能均匀。

  在实际的空气喷涂中,压缩空气通常布置在喷枪嘴的两侧,雾锥被挤压成椭圆锥,漆雾形成的喷雾锥覆盖的平面上的区域是椭圆,半长轴为a,半短轴为b,如图1所示。
在这里插入图片描述
  它在椭圆分布区域中满足椭圆双β分布模型:
在这里插入图片描述
  式中:a——喷淋椭圆半长轴(mm);b——喷淋椭圆的半短轴(mm);maxz——漆膜最大厚度;β1−x方向截面β分布指数;β2−y方向截面中β分布的指数。
  有研究表明,雾化压力P1、隔膜泵压力P2和喷雾距离h是影响上述参数的主要因素,它们之间的关系如下:
在这里插入图片描述
  上述模型为单点喷枪喷涂模型。然而,在实践中,喷枪需要沿着计划的路径移动,以便要喷涂的工件表面均匀地覆盖釉,如图2所示。
在这里插入图片描述
  由于单点喷涂时,雾锥区域厚度中间偏大,两侧偏薄,为保证喷涂表面均匀,雾锥将在图3中相邻路径重叠。
在这里插入图片描述
  基于上述背景,我们尝试探讨以下四个问题:

  1、根据以上资料,如果喷枪的喷涂方向始终保持不变(如图4所示),请计算平面内喷涂的累积情况,找出喷枪轨迹的合适重叠间隔(P1和P2取0.2Mpa,h取225mm)。
在这里插入图片描述
  2、对于曲面z=−x~2+x−xy(−10≤x≤10,−10≤y≤10),确定问题1中计算的喷涂间隔是否适用。如果没有,请重新规划喷枪轨迹,并计算重叠间隔,使釉面厚度差小于10%(不同轨迹的间隔可以不同,P1和P2取0.2Mpa,h可根据实际需要选择)。

  3、喷涂过程中,如果喷枪的喷涂方向始终是雾锥中心(如图5所示)喷涂点的法线方向,其他条件不变,请重新计算问题2的结果。
在这里插入图片描述
  4、问题3的结果是否适用于任何曲面z=f(x,y)?喷涂路径规划是否有通用解决方案

整体求解过程概述(摘要)

  机器人上釉作为提高陶瓷生产过程自动化程度的一种新方法,对提高上釉效率有一定的作用。因此,探索机器人釉料在不同工件表面条件下的自动轨迹规划对提高陶瓷工艺现代化水平具有重要意义。

  平面釉料自动轨迹规划:首先,将微积分法与椭圆双β分布模型相结合,建立以釉料厚度均匀性为目标的平面釉料轨迹优化模型。最后,对不同横截面的釉膜厚度模型进行仿真分析,验证了模型的正确性。

  曲面(垂直于水平方向)施釉轨迹规划:首先,采用投影法对椭圆双β分布模型进行修正,得到施釉方向垂直于水平方向时曲面的釉膜厚度分布模型

  确定方向。然后,建立曲面轨道优化模型,对最小釉厚差进行优化。最后证明了问题1的重叠区间不适用于问题2的曲面,问题2的重叠区间d的最优解为89.36~95.05mm。

  曲面(沿喷点法向)施釉轨迹规划:首先采用投影法修正平面椭圆双β分布模型,建立喷釉方向为雾锥中心喷点法向时的釉膜厚度分布模型。然后,基于切片算法,以涂层均匀性为优化目标,建立了表面喷釉轨迹优化模型。最后证明了曲面重叠间隔d的最优解为80.26~90.53mm。

  任意曲面釉面轨迹规划:首先利用β角、θ角、喷枪高度等参数描述不同曲面之间的差异。通过改变不同的地面观测参数,重复发射装置的参数。最后,采用黄金分割迭代法求出d值,并编制了任意面釉轨迹规划程序。通过MATLAB仿真验证了模型的正确性,结果符合标准。

模型假设:

  ➢ 边缘厚度对喷涂层厚度分布模型没有影响。

  ➢ 喷涂机器人喷涂一定高度,不改变。

  ➢ 机器人在涂布过程中的速度恒定,没有突变。

问题重述:

  问题背景

  喷釉是陶瓷生产工艺的重要组成部分,由于釉面不均匀在烧成过程中会产生裂纹,导致零件报废,因此喷釉工艺要求喷釉尽可能厚,同时也降低了效率。

  机器人上釉的出现为提高上釉效率提供了一条新途径,对提高陶瓷生产过程的自动化具有重要意义。

  我们的工作

  ➢ 分析了机器人喷釉的平面釉厚度分布,设计了平面釉自动轨迹优化方案。

  ➢ 探讨了机器人搪瓷上釉方向与水平方向垂直时曲面上釉膜厚度的分布情况,建立了该条件下曲面上釉的自动轨迹优化方案。

  ➢ 研究了沿锥体法向喷涂的锥体曲面上釉膜厚度的分布。建立了该条件下表面施釉自动轨迹的优化方案。

  ➢ 探究工件表面是否为任意曲面,是否有通用的自动喷釉机器人优化方案来解决喷釉路径规划问题。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
[x,y]=meshgrid(-10:1:10);
z=-x.^2+x-x.*y;
mesh(x,y,z);
title('curved surface z')
xlabel('X');
ylabel('Y');
zlabel('Z');
[x,y]=meshgrid(-10:1:10);
z=-x.^2+x-x.*y;
mesh(x,y,z);
title('curved surface z')
xlabel('X');
ylabel('Y');
zlabel('Z');
hold on
ezmesh('0')
A=[129.8665 -55.2435 1.7436 -297.3908;52.5130 -5.7480 0.7394 -128.6368;59.7245 393.9655 -0.1244 150.0184;-7.0125 34.5045 0.0284 -9.5229;-4.6130 18.3620 0.0113 -0.3924];
B=[0.2 0.2 225 1];
C=A*B'
a=C(1);
b=C(2);
Zmax=C(3);
beta1=C(4);
beta2=C(5);
Zmin1=Zmax*(1-(a^2/b^2))^(beta2-1);
y1=sqrt((b^2)*(1-exp((1/(beta2-1))*log((Zmax-Zmin1)/Zmax))));
d1=abs(a-y1);
Zmin2=Zmax*(1-b^2/a^2)^(beta1-1);
x2=sqrt((a^2)*(1-exp((1/(beta1-1))*log((Zmax-Zmin2)/Zmax))));
d2=abs(b-x2);
A=[129.8665 -55.2435 1.7436 -297.3908;52.5130 -5.7480 0.7394 -128.6368;59.7245 393.9655 -0.1244 150.0184;-7.0125 34.5045 0.0284 -9.5229;-4.6130 18.3620 0.0113 -0.3924];
B=[0.2 0.2 225 1];
C=A*B';
a=C(1);
b=C(2);
Zmax=C(3);
beta1=C(4);
beta2=C(5);
Zmin1=Zmax*(1-(a^2/b^2))^(beta2-1);
y1=sqrt((b^2)*(1-exp((1/(beta2-1))*log((Zmax-Zmin1)/Zmax))));
d1=abs(a-y1);
Zmax=C(3);
Z1=Zmax
z=-1+1-(a-d1+1);
h1=0-z;
h=B(3)+h1;
B1=[0.2 0.2 h 1];
C1=A*B1';
a1=C1(1);
b1=C1(2);
Zmax=C1(3);
beta1=C1(4);
beta2=C1(5);
Z2=Zmax*(1-1/a1^2)^(beta1-1)*(1-(a-d1+1)^2/(b1^2*(1-1/a1^2)))^(beta2-
1);
if Z1==Z2fprintf('the overlap interval is suitable')
elsefprintf('the overlap interval isn’t suitable')
end
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

这篇关于2017年亚太杯APMCM数学建模大赛B题喷雾轨迹规划问题求解全过程文档及程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/281979

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k