基于Python和GDAL实现栅格数据中相邻地物边界提取

2023-10-24 19:50

本文主要是介绍基于Python和GDAL实现栅格数据中相邻地物边界提取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎客官移步到简研–简简单单科研中学习和交流

对输入的影像计算指定像元值四邻域内指定像元值的像元数并输出成新文件

此代码块是打包成exe的源文件

1、导入相关python包

在网址 https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal 下载对应python版本的whl文件。如,GDAL‑3.0.0‑cp38‑cp38m‑win32.whl

pip install numpy
pip install GDAL‑3.0.0‑cp38‑cp38m‑win32.whl

2、代码

from osgeo import gdal, gdalconst
from osgeo.gdalconst import *
import numpy as np
import sys
np.set_printoptions(threshold = 1e6) 
#设置输入和输出参数
#参数1:输入待计算边界的原始TIFF影像
#参数2:计算的结果影像文件(TIFF文件)
#参数3:参数1中的待计算的焦点像元值
#参数4:用于计算边界像元的邻域算子窗口大小
#参数5:参数1中的待计算的邻域像元值
Input = sys.argv[1].replace('\\','/')
FocusPoint = int(sys.argv[2])
ZoneNear = int(sys.argv[3])
NeiOpe = int(sys.argv[4])
Output = sys.argv[5].replace('\\','/')
#读取栅格数据
ds = gdal.Open(Input,GA_ReadOnly)
if ds is None:print(Input)
cols = ds.RasterXSize
rows = ds.RasterYSize
geotransform = ds.GetGeoTransform()
geoProjection = ds.GetProjection()
pixelWidth = geotransform[1]
pixelHeight = geotransform[5]
band = ds.GetRasterBand(1)
data = band.ReadAsArray(0, 0, cols, rows)
data = data.astype(np.int)
Ordata = np.array(data,dtype = int)
#基于原始数据构造二元值
UniqueValue = np.unique(Ordata)#计算唯一像元值
OnlyFocusPoint = np.where(Ordata == FocusPoint, 0, -1)
OnlyZoneNear = np.where(Ordata == ZoneNear, 2, 0)
FZ = OnlyFocusPoint + OnlyZoneNear
ReData = np.where(FZ == -1, 0, FZ)
#拼接数据
row0 = np.zeros([1,cols], dtype = int)
col0 = np.zeros([rows+2,1], dtype = int)
rowPinRow = np.r_[row0,ReData,row0]
rowPinCol = np.c_[col0,rowPinRow,col0]
DataPin = rowPinCol
rowsPin = np.shape(DataPin)[0]
colsPin = np.shape(DataPin)[1]
outData = np.zeros([rowsPin,colsPin],dtype = np.int)
#构造切片
if NeiOpe == 8: #8邻域,不包括中心像元outData[1:rowsPin-1,1:colsPin-1] = (DataPin[0:rowsPin-2,0:colsPin-2] + DataPin[0:rowsPin-2,1:colsPin-1] + DataPin[0:rowsPin-2,2:colsPin] + DataPin[1:rowsPin-1,0:colsPin-2] + DataPin[1:rowsPin-1,2:colsPin] + DataPin[2:rowsPin,0:colsPin-2] + DataPin[2:rowsPin,1:colsPin-1] + DataPin[2:rowsPin,2:colsPin])
elif NeiOpe == 4:#4邻域,不包括中心像元outData[1:rowsPin-1,1:colsPin-1] = (DataPin[0:rowsPin-2,1:colsPin-1] + DataPin[1:rowsPin-1, 0:colsPin-2] + DataPin[1:rowsPin-1,2:colsPin] + DataPin[2:rowsPin,1:colsPin-1])
else:print('Only 4 or 8')
ResultData = outData[1:rowsPin-1,1:colsPin-1]
#构造淹没
Mask = np.where(Ordata == FocusPoint, 0, np.nan)
EdgeData = np.array(Mask + ResultData)
#新建栅格用于存放EdgeData
driver = gdal.GetDriverByName("GTiff")
outDataset = driver.Create(Output, cols, rows, 1, gdal.GDT_Int16)
outDataset.SetGeoTransform(geotransform) 
outDataset.SetProjection(geoProjection)
outBand = outDataset.GetRasterBand(1)
outBand.WriteArray(EdgeData)
outBand.SetNoDataValue(0)
outDataset.FlushCache()
#至此计算指定像元值的焦点像元邻域中特地像元值的像元个数计算完成
#若计算出具体的边界长度,可用pixelWidth或pixelHeight乘以EdgeData计算即可
print('Done')

3、打包成exe可执行文件

使用PyInstaller可以将Python程序打包成Windows可执行程序,此处不写详细步骤,参考:https://www.cnblogs.com/yu2000/p/3797654.html

4、原图像文件&计算结果

图1 提取边界的原图
图1 提取边界的原图
图2 提取边界的结果图(4领域)
注释:像元值为1,表示图1中的建设用地4领域内共有1个耕地像元。
提取边界的结果图(4领域)
图3 提取边界的结果图(8领域)
注释:像元值为1,表示图1中的建设用地8领域内共有1个耕地像元。
提取边界的结果图(8领域)

这里分界线

安利个看美剧背单词,练习听说的工具|美剧词典
在这里插入图片描述
美剧词典是一款短情景形式的英语学习工具。首先呢,颜值是十分高的,界面简洁,配色清新;其次,有才华啊,目前共收录了近10万条字幕数据,10万条短情景和80万条词汇。短情景均为几秒的无字幕原声经典美剧视频片段,不占用多少时间就能让你get到原汁原味的单词含义和用处啦。美剧词典现包括**“查询”、“单词本”、“音频"和"我的”**四项功能。

这篇关于基于Python和GDAL实现栅格数据中相邻地物边界提取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/277389

相关文章

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.