【3维视觉】mesh采样成sdf代码分析,sample_SDF_points

2023-10-23 23:10

本文主要是介绍【3维视觉】mesh采样成sdf代码分析,sample_SDF_points,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

sample_SDF_points的完整代码

gpu_id = '5'
source_dir = 'demo_data/input'
target_dir = 'demo_data/output'
all_classes = ["02691156","04090263"
]
num_samples_and_method = [(100000, 'uniformly'), (100000, 'near')]
################################################import os
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_id
from datetime import datetime
import numpy as np
import torch
from utils import *for c in all_classes:input_dir = os.path.join(source_dir, c)output_dir = os.path.join(target_dir, c)os.makedirs(output_dir, exist_ok=True)all_shapes = os.listdir(input_dir)all_shapes = [f.split('.')[0] for f in all_shapes]for i, shape_id in enumerate(all_shapes):print(datetime.now().strftime('%Y-%m-%d %H:%M:%S'), c, 'processing: %d/%d'%(i,len(all_shapes)))in_path = os.path.join(input_dir, shape_id+'.obj')out_path = os.path.join(output_dir, shape_id+'.npy')vertices, faces = load_obj(in_path)mesh = obj2nvc(vertices, faces).cuda()mesh_normals = face_normals(mesh)distrib = area_weighted_distribution(mesh, mesh_normals)xyz = sample_points(mesh, num_samples_and_method, mesh_normals, distrib)sd = points_mesh_signed_distance(xyz, mesh)xyz_sd = torch.cat([xyz, sd.unsqueeze(1)], dim=1)rand_idx = torch.randperm(xyz_sd.shape[0])xyz_sd = xyz_sd[rand_idx].cpu().numpy()np.save(out_path, xyz_sd)

导入obj读点面:vertices, faces = load_obj(in_path)

def load_obj(filename):"""Args:filename: str, path to .obj fileReturns:vertices: tensor(float), shape (num_vertices, 3)faces: tensor(long), shape (num_faces, 3)"""assert os.path.exists(filename), 'File \''+filename+'\' does not exist.'reader = tinyobjloader.ObjReader() # 构造tinyobjloader的ObjReader类config = tinyobjloader.ObjReaderConfig()config.triangulate = Truereader.ParseFromFile(filename, config) # 从文件filename中按配置config读objattrib = reader.GetAttrib()  # 得到逐点的属性vertices = torch.FloatTensor(attrib.vertices).reshape(-1, 3) # 得到n*3维的张量shapes = reader.GetShapes()faces = []for shape in shapes:faces += [idx.vertex_index for idx in shape.mesh.indices]faces = torch.LongTensor(faces).reshape(-1, 3)return vertices, faces

attrib = reader.GetAttrib()

返回的是attrib_t类型
其中attrib.vertices是将每个点的3个坐标依次排放在一个list中
比如有n个点,得到的attrib.vertices的维度就是3n
在这里插入图片描述

class attrib_t(__pybind11_builtins.pybind11_object):# no docdef numpy_vertices(self): # real signature unknown; restored from __doc__""" numpy_vertices(self: tinyobjloader.attrib_t) -> numpy.ndarray[float64] """passdef __init__(self): # real signature unknown; restored from __doc__""" __init__(self: tinyobjloader.attrib_t) -> None """passcolors = property(lambda self: object(), lambda self, v: None, lambda self: None)  # defaultnormals = property(lambda self: object(), lambda self, v: None, lambda self: None)  # defaulttexcoords = property(lambda self: object(), lambda self, v: None, lambda self: None)  # defaultvertices = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default

vertices = torch.FloatTensor(attrib.vertices).reshape(-1, 3)

torch.FloatTensor()

类型转换, 将list ,numpy转化为tensor,其中的每个数据是float类型

reshape(-1,3)

维度转换,将tensor转换3列的维度,(-1)表示转换后行的维度需要计算得到。
在这里插入图片描述

shapes = reader.GetShapes()

shapes的数据结构
在这里插入图片描述
shape.mesh.indices的数据结构
在这里插入图片描述

class shape_t(__pybind11_builtins.pybind11_object):# no docdef __init__(self): # real signature unknown; restored from __doc__""" __init__(self: tinyobjloader.shape_t) -> None """passlines = property(lambda self: object(), lambda self, v: None, lambda self: None)  # defaultmesh = property(lambda self: object(), lambda self, v: None, lambda self: None)  # defaultname = property(lambda self: object(), lambda self, v: None, lambda self: None)  # defaultpoints = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default

faces += [idx.vertex_index for idx in shape.mesh.indices]

得到的faces的维度为:301,656, 把每个面的三个点索引依次排放到list中
在这里插入图片描述

faces = torch.LongTensor(faces).reshape(-1, 3)

得到的faces的维度为:100,552x3,表示的就是有100552个面,每行代表组成这个面的三个顶点的索引

转换数据格式为N面-3点-xyz: mesh = obj2nvc(vertices, faces).cuda()

def obj2nvc(vertices, faces):"""Args:vertices: tensor(float), shape (num_vertices, 3)faces: tensor(long), shape (num_faces, 3)Returns:mesh: tensor(float), shape (num_faces, 3, 3), (num_faces, 3 vertices, xyz coordinates)"""mesh = vertices[faces.flatten()].reshape(faces.size()[0], 3, 3)return mesh.contiguous()

mesh = vertices[faces.flatten()].reshape(faces.size()[0], 3, 3)

得到的mesh的维度是100,552x3x3,即每个面对应的3个点,每一个点对应的3个坐标值
在这里插入图片描述

求每个面的法线:mesh_normals = face_normals(mesh)

def face_normals(mesh):"""Args:mesh: tensor(float), shape (num_faces, 3, 3)Returns:normals: tensor(float), shape (num_faces, 3)"""vec_a = mesh[:, 0] - mesh[:, 1]  # 每个三角形面的第0个顶点坐标-第1个顶点坐标=矢量10vec_b = mesh[:, 1] - mesh[:, 2]  # 每个三角形面的第1个顶点坐标-第2个顶点坐标=矢量21normals = torch.cross(vec_a, vec_b)  # 计算两个矢量的叉乘得到法线return normals

分析面的分布:distrib = area_weighted_distribution(mesh, mesh_normals)

def area_weighted_distribution(mesh, normals=None):"""Args:mesh: tensor(float), shape (num_faces, 3, 3)normals: tensor(float), shape (num_faces, 3)Returns:distrib: distribution"""if normals is None:normals = face_normals(mesh)areas = torch.norm(normals, p=2, dim=1) * 0.5areas /= torch.sum(areas) + 1e-10distrib = torch.distributions.Categorical(areas.view(-1))return distrib

torch.norm()

对输入张量input在给定维度dim上求p范数

def norm(input, p="fro", dim=None, keepdim=False, out=None, dtype=None)

参考:
torch.norm()函数的用法

范数理解

重头戏1:xyz = sample_points(mesh, num_samples_and_method, mesh_normals, distrib)

num_samples_and_method = [(100000, 'uniformly'), (100000, 'near')]

从mesh模型上采样点

def sample_points(mesh, num_samples_and_method, normals=None, distrib=None):"""Args:mesh: tensor(float), shape (num_faces, 3, 3)num_samples_and_method: [tuple(int, str)]normals: tensor(float), shape (num_faces, 3)distrib: distributionReturns:samples: tensor(float), shape (num_samples, 3)"""if normals is None:normals = face_normals(mesh)if distrib is None:distrib = area_weighted_distribution(mesh, normals)samples = []for num_samples, method in num_samples_and_method:if method == 'uniformly':samples.append(sample_uniformly(mesh, num_samples))elif method == 'surface':samples.append(sample_on_surface(mesh, num_samples, normals, distrib)[0])elif method == 'near':samples.append(sample_near_surface(mesh, num_samples, normals, distrib))samples = torch.cat(samples, dim=0)return samples

均匀采样:sample_uniformly(mesh, num_samples)

def sample_uniformly(mesh, num_samples):"""sample uniformly in [-1,1] bounding volume.Args:mesh: tensor(float), shape (num_faces, 3, 3)num_samples: intReturns:samples: tensor(float), shape (num_samples, 3)"""samples = (torch.rand(num_samples, 3) - 0.5) * 1.1samples = samples.to(mesh.device)return samples

每个面上采样:sample_on_surface(mesh, num_samples, normals, distrib)

squeeze:压缩维度,
unsqueeze:膨胀维度,unsqueeze(-1)在最后一维增加一个维度

def sample_on_surface(mesh, num_samples, normals=None, distrib=None):"""Args:mesh: tensor(float), shape (num_faces, 3, 3)num_samples: intnormals: tensor(float), shape (num_faces, 3)distrib: distributionReturns:samples: tensor(float), shape (num_samples, 3)normals: tensor(float), shape (num_samples, 3)"""if normals is None:normals = face_normals(mesh)if distrib is None:distrib = area_weighted_distribution(mesh, normals)idx = distrib.sample([num_samples])selected_faces = mesh[idx]selected_normals = normals[idx]u = torch.sqrt(torch.rand(num_samples)).to(mesh.device).unsqueeze(-1)v = torch.rand(num_samples).to(mesh.device).unsqueeze(-1)samples = (1 - u) * selected_faces[:,0,:] + (u * (1 - v)) * selected_faces[:,1,:] + u * v * selected_faces[:,2,:]  # 每个面上采样了一个点return samples, selected_normals

sample_near_surface(mesh, num_samples, normals, distrib)

def sample_near_surface(mesh, num_samples, normals=None, distrib=None):"""Args:mesh: tensor(float), shape (num_faces, 3, 3)num_samples: intnormals: tensor(float), shape (num_faces, 3)distrib: distributionReturns:samples: tensor(float), shape (num_samples, 3)"""samples = sample_on_surface(mesh, num_samples, normals, distrib)[0] #  面上采样samples += torch.randn_like(samples) * 0.01 # 面上采样完后再对坐标进行一些偏移return samples

torch.randn为从标准正太分布(均值为0,方差为1)中随机选择的一组数

重头戏2:sd = points_mesh_signed_distance(xyz, mesh)

求采样点到mesh表面的距离

def points_mesh_signed_distance(points, mesh):"""Args:points: tensor(float), shape (num_points, 3)mesh: tensor(float), shape (num_faces, 3, 3)Returns:sd: tensor(float), shape (num_points,)"""sd = mesh2sdf.mesh2sdf_gpu(points, mesh)[0]  # nvidia实现的C++,gpu版本的mesh2sdfreturn sd

将坐标xyz和到表面距离sd拼接起来: xyz_sd = torch.cat([xyz, sd.unsqueeze(1)], dim=1)

sd.unsqueeze(1),比如原来
sd.shape 为 torch.Size([num_samples])
sd.unsqueeze(1).shape为 torch.Size([num_samples,1])

这篇关于【3维视觉】mesh采样成sdf代码分析,sample_SDF_points的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/271064

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.