景联文科技语音数据标注:AUTO-AVSR模型和数据助力视听语音识别

本文主要是介绍景联文科技语音数据标注:AUTO-AVSR模型和数据助力视听语音识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ASR、VSR和AV-ASR的性能提高很大程度上归功于更大的模型和训练数据集的使用。

更大的模型具有更多的参数和更强大的表示能力,能够捕获到更多的语言特征和上下文信息,从而提高识别准确性;更大的训练集也能带来更好的性能,更多的数据可以提供更多的上下文信息,帮助模型更好地理解语音和视觉信号,减少噪声和干扰的影响。

AUTO-AVSR是一种自动标注辅助下的视听语音识别技术。它通过使用预训练的ASR模型自动转录未标记的视频数据,从而扩展音频-视觉数据以用于语音识别。

ASR(自动语音识别技术)主要是将语音信号转换为文本,它依赖于声音信号和语音特征来识别和理解人类语言。因此,ASR模型通常在语音到文本的转换方面训练和优化,以实现高精度的语音识别和文本标注。

ASR面临的一个重要问题是其对噪声的鲁棒性不足。尽管语音识别系统在无噪声环境下可以达到很高的识别精度,但在真实世界的各种应用中,背景噪声往往会对系统的性能产生显著影响。

而通过AVSR(视听语音识别)可以解决上述问题。VSR涉及视频中的语音和视觉信息的联合处理,旨在同时理解和处理语音和视觉信息。VSR模型通常利用视觉特征(如面部表情、口型变化等)和音频特征(语音内容)来理解视频中的语音内容。因此,VSR模型在处理视频中的语音时可以更准确地理解和处理口音、语速、音调等因素,从而为视频内容提供更精确的文本标注。

虽然ASR和VSR在处理的问题和应用场景上存在差异,但在某些情况下,ASR模型也可以为VSR提供更好的文本标注。例如,在一些场景中,语音信号可能比较嘈杂或模糊不清,使得VSR模型难以准确地识别和理解语音内容。在这种情况下,一个更精确的ASR模型可以帮助提取更准确的语音特征和文本标注,从而辅助VSR模型更好地理解和处理视频中的语音内容。

景联文科技是AI基础行业的头部数据供应商,可协助人工智能企业解决整个人工智能链条中数据标注环节的相对应问题。

景联文科技拥有丰富的语音数据采集标注项目经验,自建专业语音采集录音室,有高度还原真实场景能力,在全国30多个省市有近一万人的被采集人员储备,全球范围内也有采集渠道,支持多语种、多方言语音采集。自有的数据管理平台,支持语音工程:语音切割、ASR语音转写、语音情绪判定、声纹识别标注等,打通数据闭环,可有序进行数据分发、清洗、标注、质检、等环节,交付高质量的训练数据,提高企业AI数据训练效率,加速人工智能相关应用的落地迭代周期。

景联文科技|数据采集|数据标注

助力人工智能技术,赋能传统产业智能化转型升级

文章图文著作权归景联文科技所有,商业转载请联系景联文科技获得授权,非商业转载请注明出处。

这篇关于景联文科技语音数据标注:AUTO-AVSR模型和数据助力视听语音识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/262205

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time