图论05-【无权无向】-图的广度优先遍历-路径问题/检测环/二分图/最短路径问题

本文主要是介绍图论05-【无权无向】-图的广度优先遍历-路径问题/检测环/二分图/最短路径问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 代码仓库
  • 2. 单源路径
    • 2.1 思路
    • 2.2 主要代码
  • 3. 所有点对路径
    • 3.1 思路
    • 3.2 主要代码
  • 4. 联通分量
  • 5. 环检测
    • 5.1 思路
    • 5.2 主要代码
  • 6. 二分图检测
    • 6.1 思路
    • 6.2 主要代码
      • 6.2.1 遍历每个联通分量
      • 6.2.2 判断相邻两点的颜色是否一致
  • 7. 最短路径问题
    • 7.1 思路
    • 7.2 代码

1. 代码仓库

https://github.com/Chufeng-Jiang/Graph-Theory

2. 单源路径

2.1 思路

  1. 构造visited数组和pre数组
    1.1 visited数组记录当前节点是否访问过
    也可以不使用visited数组,pre数组全部初始化为-1,联通的顶点对应的pre数组的值为前一个节点,pre数组中值为-1的都是不连通的顶点。
    1.2 pre数组记录当前节点的前一个节点
  2. 使用pre数组对终点进行反推回源点,并记录
  3. 将终点到原点的路径,反序输出

区别DFS和BFS两种解法中,递归部分参数问题。

DFS实际上是递归,把参数传进去就开始递归了。而BFS实际上是使用队列进行模拟,只需要传入源就可以,两个参数也可以但是没必要。

private void dfs(int v, int parent){ //参数一:当前顶点; 参数二:上一个顶点
private void bfs(int s){

2.2 主要代码

public SingleSourcePath(Graph G, int s){this.G = G;this.s = s;visited = new boolean[G.V()];pre = new int[G.V()];for(int i = 0; i < pre.length; i ++)pre[i] = -1;bfs(s);
}private void bfs(int s){ Queue<Integer> queue = new LinkedList<>();queue.add(s);visited[s] = true;pre[s] = s; //赋初值,源的源是源while(!queue.isEmpty()){int v = queue.remove();for(int w: G.adj(v))if(!visited[w]){queue.add(w);visited[w] = true;pre[w] = v; //w的上一个顶点是v}}
}

3. 所有点对路径

3.1 思路

对所有顶点进行遍历,创建每一个点的单源路径数组。

3.2 主要代码

    public AllPairsPath_UsingSingleSourcePath(Graph G){this.G = G;paths = new SingleSourcePath[G.V()];for(int v = 0; v < G.V(); v ++)paths[v] = new SingleSourcePath(G, v);}

4. 联通分量

跟DFS是一样的

public CC(Graph G){this.G = G;visited = new int[G.V()];for(int i = 0; i < visited.length; i ++)visited[i] = -1;for(int v = 0; v < G.V(); v ++)if(visited[v] == -1){bfs(v, cccount); //从0开始cccount ++;      //统计联通分量的数量}
}

5. 环检测

跟DFS也基本一样

5.1 思路

从某一点v出发,找到了点w,w被访问过,并且w不是v的前一个节点

5.2 主要代码

public CycleDetection(Graph G){this.G = G;visited = new boolean[G.V()];pre = new int[G.V()];for(int i = 0; i < G.V(); i ++)pre[i] = -1;for(int v = 0; v < G.V(); v ++)if(!visited[v])if(bfs(v)){hasCycle = true;break;}
}// 从顶点 v 开始,判断图中是否有环
private boolean bfs(int s){Queue<Integer> queue = new LinkedList<>();queue.add(s);visited[s] = true;pre[s] = s;while(!queue.isEmpty()){int v = queue.remove();for(int w: G.adj(v))if(!visited[w]){ //如果w没有访问过queue.add(w);visited[w] = true;pre[w] = v;}else if(pre[v] != w) //从s出发,如果w被访问过,并且顶点v的前一个不是wreturn true;}return false;
}

6. 二分图检测

6.1 思路

二分图可以通过染色过程把顶点区分开,
[-1:顶点还没染色]
[0:一种颜色]
[1:另外一种颜色]

6.2 主要代码

6.2.1 遍历每个联通分量

  1. dfs(v, 0) 返回true代表相连的两点颜色不一样,暂未出现矛盾;
  2. dfs(v, 0) 返回false代表相连的两点颜色一样,不符合二分图的定义,因此进入if语句块,设置isBipartite = false;并且提前结束循环。
public BipartitionDetection(Graph G){this.G = G;visited = new boolean[G.V()];colors = new int[G.V()];for(int i = 0; i < G.V(); i ++)colors[i] = -1;for(int v = 0; v < G.V(); v ++)if(!visited[v])if(!bfs(v)){isBipartite = false;break;}}

6.2.2 判断相邻两点的颜色是否一致

 private boolean bfs(int s){Queue<Integer> queue = new LinkedList<>();queue.add(s);visited[s] = true;colors[s] = 0;while(!queue.isEmpty()){int v = queue.remove();for(int w: G.adj(v))if(!visited[w]){queue.add(w);visited[w] = true;colors[w] = 1 - colors[v];}else if(colors[v] == colors[w])return false;}return true;}

7. 最短路径问题

在这里插入图片描述

7.1 思路

  1. 引入dis数组;
  2. 在从出发顶点进行BFS的时,pre数组记录当前节点的上一个节点,dis数组更新为当前节点到源点的距离=上一个节点到出发点的距离+1

private int[] dis;
dis[w] = dis[v] + 1;

7.2 代码

public USSSPath(Chapt04_BFS_Path._0402_SingleSourcePath.Graph G, int s){this.G = G;this.s = s;visited = new boolean[G.V()];pre = new int[G.V()];dis = new int[G.V()];for(int i = 0; i < pre.length; i ++) {pre[i] = -1;dis[i] = -1;}bfs(s);for (int i = 0; i < G.V(); i++) {System.out.print(dis[i] + " ");}System.out.println();
}private void bfs(int s){ // 区分一下DFS两个参数,DFS实际上是递归,把参数传进去就开始递归了。而BFS实际上是使用队列进行模拟,只需要传入源就可以,两个参数也可以但是没必要Queue<Integer> queue = new LinkedList<>();queue.add(s);visited[s] = true;pre[s] = s; //赋初值,源的源是源dis[s] = 0;while(!queue.isEmpty()){int v = queue.remove();for(int w: G.adj(v))if(!visited[w]){queue.add(w);visited[w] = true;pre[w] = v; //w的上一个顶点是vdis[w] = dis[v] + 1;}}
}

在这里插入图片描述

这篇关于图论05-【无权无向】-图的广度优先遍历-路径问题/检测环/二分图/最短路径问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260771

相关文章

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

解决java.util.RandomAccessSubList cannot be cast to java.util.ArrayList错误的问题

《解决java.util.RandomAccessSubListcannotbecasttojava.util.ArrayList错误的问题》当你尝试将RandomAccessSubList... 目录Java.util.RandomAccessSubList cannot be cast to java.

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤

java反序列化serialVersionUID不一致问题及解决

《java反序列化serialVersionUID不一致问题及解决》文章主要讨论了在Java中序列化和反序列化过程中遇到的问题,特别是当实体类的`serialVersionUID`发生变化或未设置时,... 目录前言一、序列化、反序列化二、解决方法总结前言serialVersionUID变化后,反序列化失

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关