图论05-【无权无向】-图的广度优先遍历-路径问题/检测环/二分图/最短路径问题

本文主要是介绍图论05-【无权无向】-图的广度优先遍历-路径问题/检测环/二分图/最短路径问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 代码仓库
  • 2. 单源路径
    • 2.1 思路
    • 2.2 主要代码
  • 3. 所有点对路径
    • 3.1 思路
    • 3.2 主要代码
  • 4. 联通分量
  • 5. 环检测
    • 5.1 思路
    • 5.2 主要代码
  • 6. 二分图检测
    • 6.1 思路
    • 6.2 主要代码
      • 6.2.1 遍历每个联通分量
      • 6.2.2 判断相邻两点的颜色是否一致
  • 7. 最短路径问题
    • 7.1 思路
    • 7.2 代码

1. 代码仓库

https://github.com/Chufeng-Jiang/Graph-Theory

2. 单源路径

2.1 思路

  1. 构造visited数组和pre数组
    1.1 visited数组记录当前节点是否访问过
    也可以不使用visited数组,pre数组全部初始化为-1,联通的顶点对应的pre数组的值为前一个节点,pre数组中值为-1的都是不连通的顶点。
    1.2 pre数组记录当前节点的前一个节点
  2. 使用pre数组对终点进行反推回源点,并记录
  3. 将终点到原点的路径,反序输出

区别DFS和BFS两种解法中,递归部分参数问题。

DFS实际上是递归,把参数传进去就开始递归了。而BFS实际上是使用队列进行模拟,只需要传入源就可以,两个参数也可以但是没必要。

private void dfs(int v, int parent){ //参数一:当前顶点; 参数二:上一个顶点
private void bfs(int s){

2.2 主要代码

public SingleSourcePath(Graph G, int s){this.G = G;this.s = s;visited = new boolean[G.V()];pre = new int[G.V()];for(int i = 0; i < pre.length; i ++)pre[i] = -1;bfs(s);
}private void bfs(int s){ Queue<Integer> queue = new LinkedList<>();queue.add(s);visited[s] = true;pre[s] = s; //赋初值,源的源是源while(!queue.isEmpty()){int v = queue.remove();for(int w: G.adj(v))if(!visited[w]){queue.add(w);visited[w] = true;pre[w] = v; //w的上一个顶点是v}}
}

3. 所有点对路径

3.1 思路

对所有顶点进行遍历,创建每一个点的单源路径数组。

3.2 主要代码

    public AllPairsPath_UsingSingleSourcePath(Graph G){this.G = G;paths = new SingleSourcePath[G.V()];for(int v = 0; v < G.V(); v ++)paths[v] = new SingleSourcePath(G, v);}

4. 联通分量

跟DFS是一样的

public CC(Graph G){this.G = G;visited = new int[G.V()];for(int i = 0; i < visited.length; i ++)visited[i] = -1;for(int v = 0; v < G.V(); v ++)if(visited[v] == -1){bfs(v, cccount); //从0开始cccount ++;      //统计联通分量的数量}
}

5. 环检测

跟DFS也基本一样

5.1 思路

从某一点v出发,找到了点w,w被访问过,并且w不是v的前一个节点

5.2 主要代码

public CycleDetection(Graph G){this.G = G;visited = new boolean[G.V()];pre = new int[G.V()];for(int i = 0; i < G.V(); i ++)pre[i] = -1;for(int v = 0; v < G.V(); v ++)if(!visited[v])if(bfs(v)){hasCycle = true;break;}
}// 从顶点 v 开始,判断图中是否有环
private boolean bfs(int s){Queue<Integer> queue = new LinkedList<>();queue.add(s);visited[s] = true;pre[s] = s;while(!queue.isEmpty()){int v = queue.remove();for(int w: G.adj(v))if(!visited[w]){ //如果w没有访问过queue.add(w);visited[w] = true;pre[w] = v;}else if(pre[v] != w) //从s出发,如果w被访问过,并且顶点v的前一个不是wreturn true;}return false;
}

6. 二分图检测

6.1 思路

二分图可以通过染色过程把顶点区分开,
[-1:顶点还没染色]
[0:一种颜色]
[1:另外一种颜色]

6.2 主要代码

6.2.1 遍历每个联通分量

  1. dfs(v, 0) 返回true代表相连的两点颜色不一样,暂未出现矛盾;
  2. dfs(v, 0) 返回false代表相连的两点颜色一样,不符合二分图的定义,因此进入if语句块,设置isBipartite = false;并且提前结束循环。
public BipartitionDetection(Graph G){this.G = G;visited = new boolean[G.V()];colors = new int[G.V()];for(int i = 0; i < G.V(); i ++)colors[i] = -1;for(int v = 0; v < G.V(); v ++)if(!visited[v])if(!bfs(v)){isBipartite = false;break;}}

6.2.2 判断相邻两点的颜色是否一致

 private boolean bfs(int s){Queue<Integer> queue = new LinkedList<>();queue.add(s);visited[s] = true;colors[s] = 0;while(!queue.isEmpty()){int v = queue.remove();for(int w: G.adj(v))if(!visited[w]){queue.add(w);visited[w] = true;colors[w] = 1 - colors[v];}else if(colors[v] == colors[w])return false;}return true;}

7. 最短路径问题

在这里插入图片描述

7.1 思路

  1. 引入dis数组;
  2. 在从出发顶点进行BFS的时,pre数组记录当前节点的上一个节点,dis数组更新为当前节点到源点的距离=上一个节点到出发点的距离+1

private int[] dis;
dis[w] = dis[v] + 1;

7.2 代码

public USSSPath(Chapt04_BFS_Path._0402_SingleSourcePath.Graph G, int s){this.G = G;this.s = s;visited = new boolean[G.V()];pre = new int[G.V()];dis = new int[G.V()];for(int i = 0; i < pre.length; i ++) {pre[i] = -1;dis[i] = -1;}bfs(s);for (int i = 0; i < G.V(); i++) {System.out.print(dis[i] + " ");}System.out.println();
}private void bfs(int s){ // 区分一下DFS两个参数,DFS实际上是递归,把参数传进去就开始递归了。而BFS实际上是使用队列进行模拟,只需要传入源就可以,两个参数也可以但是没必要Queue<Integer> queue = new LinkedList<>();queue.add(s);visited[s] = true;pre[s] = s; //赋初值,源的源是源dis[s] = 0;while(!queue.isEmpty()){int v = queue.remove();for(int w: G.adj(v))if(!visited[w]){queue.add(w);visited[w] = true;pre[w] = v; //w的上一个顶点是vdis[w] = dis[v] + 1;}}
}

在这里插入图片描述

这篇关于图论05-【无权无向】-图的广度优先遍历-路径问题/检测环/二分图/最短路径问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260771

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模