图论05-【无权无向】-图的广度优先遍历-路径问题/检测环/二分图/最短路径问题

本文主要是介绍图论05-【无权无向】-图的广度优先遍历-路径问题/检测环/二分图/最短路径问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 代码仓库
  • 2. 单源路径
    • 2.1 思路
    • 2.2 主要代码
  • 3. 所有点对路径
    • 3.1 思路
    • 3.2 主要代码
  • 4. 联通分量
  • 5. 环检测
    • 5.1 思路
    • 5.2 主要代码
  • 6. 二分图检测
    • 6.1 思路
    • 6.2 主要代码
      • 6.2.1 遍历每个联通分量
      • 6.2.2 判断相邻两点的颜色是否一致
  • 7. 最短路径问题
    • 7.1 思路
    • 7.2 代码

1. 代码仓库

https://github.com/Chufeng-Jiang/Graph-Theory

2. 单源路径

2.1 思路

  1. 构造visited数组和pre数组
    1.1 visited数组记录当前节点是否访问过
    也可以不使用visited数组,pre数组全部初始化为-1,联通的顶点对应的pre数组的值为前一个节点,pre数组中值为-1的都是不连通的顶点。
    1.2 pre数组记录当前节点的前一个节点
  2. 使用pre数组对终点进行反推回源点,并记录
  3. 将终点到原点的路径,反序输出

区别DFS和BFS两种解法中,递归部分参数问题。

DFS实际上是递归,把参数传进去就开始递归了。而BFS实际上是使用队列进行模拟,只需要传入源就可以,两个参数也可以但是没必要。

private void dfs(int v, int parent){ //参数一:当前顶点; 参数二:上一个顶点
private void bfs(int s){

2.2 主要代码

public SingleSourcePath(Graph G, int s){this.G = G;this.s = s;visited = new boolean[G.V()];pre = new int[G.V()];for(int i = 0; i < pre.length; i ++)pre[i] = -1;bfs(s);
}private void bfs(int s){ Queue<Integer> queue = new LinkedList<>();queue.add(s);visited[s] = true;pre[s] = s; //赋初值,源的源是源while(!queue.isEmpty()){int v = queue.remove();for(int w: G.adj(v))if(!visited[w]){queue.add(w);visited[w] = true;pre[w] = v; //w的上一个顶点是v}}
}

3. 所有点对路径

3.1 思路

对所有顶点进行遍历,创建每一个点的单源路径数组。

3.2 主要代码

    public AllPairsPath_UsingSingleSourcePath(Graph G){this.G = G;paths = new SingleSourcePath[G.V()];for(int v = 0; v < G.V(); v ++)paths[v] = new SingleSourcePath(G, v);}

4. 联通分量

跟DFS是一样的

public CC(Graph G){this.G = G;visited = new int[G.V()];for(int i = 0; i < visited.length; i ++)visited[i] = -1;for(int v = 0; v < G.V(); v ++)if(visited[v] == -1){bfs(v, cccount); //从0开始cccount ++;      //统计联通分量的数量}
}

5. 环检测

跟DFS也基本一样

5.1 思路

从某一点v出发,找到了点w,w被访问过,并且w不是v的前一个节点

5.2 主要代码

public CycleDetection(Graph G){this.G = G;visited = new boolean[G.V()];pre = new int[G.V()];for(int i = 0; i < G.V(); i ++)pre[i] = -1;for(int v = 0; v < G.V(); v ++)if(!visited[v])if(bfs(v)){hasCycle = true;break;}
}// 从顶点 v 开始,判断图中是否有环
private boolean bfs(int s){Queue<Integer> queue = new LinkedList<>();queue.add(s);visited[s] = true;pre[s] = s;while(!queue.isEmpty()){int v = queue.remove();for(int w: G.adj(v))if(!visited[w]){ //如果w没有访问过queue.add(w);visited[w] = true;pre[w] = v;}else if(pre[v] != w) //从s出发,如果w被访问过,并且顶点v的前一个不是wreturn true;}return false;
}

6. 二分图检测

6.1 思路

二分图可以通过染色过程把顶点区分开,
[-1:顶点还没染色]
[0:一种颜色]
[1:另外一种颜色]

6.2 主要代码

6.2.1 遍历每个联通分量

  1. dfs(v, 0) 返回true代表相连的两点颜色不一样,暂未出现矛盾;
  2. dfs(v, 0) 返回false代表相连的两点颜色一样,不符合二分图的定义,因此进入if语句块,设置isBipartite = false;并且提前结束循环。
public BipartitionDetection(Graph G){this.G = G;visited = new boolean[G.V()];colors = new int[G.V()];for(int i = 0; i < G.V(); i ++)colors[i] = -1;for(int v = 0; v < G.V(); v ++)if(!visited[v])if(!bfs(v)){isBipartite = false;break;}}

6.2.2 判断相邻两点的颜色是否一致

 private boolean bfs(int s){Queue<Integer> queue = new LinkedList<>();queue.add(s);visited[s] = true;colors[s] = 0;while(!queue.isEmpty()){int v = queue.remove();for(int w: G.adj(v))if(!visited[w]){queue.add(w);visited[w] = true;colors[w] = 1 - colors[v];}else if(colors[v] == colors[w])return false;}return true;}

7. 最短路径问题

在这里插入图片描述

7.1 思路

  1. 引入dis数组;
  2. 在从出发顶点进行BFS的时,pre数组记录当前节点的上一个节点,dis数组更新为当前节点到源点的距离=上一个节点到出发点的距离+1

private int[] dis;
dis[w] = dis[v] + 1;

7.2 代码

public USSSPath(Chapt04_BFS_Path._0402_SingleSourcePath.Graph G, int s){this.G = G;this.s = s;visited = new boolean[G.V()];pre = new int[G.V()];dis = new int[G.V()];for(int i = 0; i < pre.length; i ++) {pre[i] = -1;dis[i] = -1;}bfs(s);for (int i = 0; i < G.V(); i++) {System.out.print(dis[i] + " ");}System.out.println();
}private void bfs(int s){ // 区分一下DFS两个参数,DFS实际上是递归,把参数传进去就开始递归了。而BFS实际上是使用队列进行模拟,只需要传入源就可以,两个参数也可以但是没必要Queue<Integer> queue = new LinkedList<>();queue.add(s);visited[s] = true;pre[s] = s; //赋初值,源的源是源dis[s] = 0;while(!queue.isEmpty()){int v = queue.remove();for(int w: G.adj(v))if(!visited[w]){queue.add(w);visited[w] = true;pre[w] = v; //w的上一个顶点是vdis[w] = dis[v] + 1;}}
}

在这里插入图片描述

这篇关于图论05-【无权无向】-图的广度优先遍历-路径问题/检测环/二分图/最短路径问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260771

相关文章

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图