【Overload游戏引擎细节分析】Lambert材质Shader分析

2023-10-22 07:12

本文主要是介绍【Overload游戏引擎细节分析】Lambert材质Shader分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、经典光照模型:Phong模型

现实世界的光照是极其复杂的,而且会受到诸多因素的影响,这是以目前我们所拥有的处理能力无法模拟的。经典光照模型冯氏光照模型(Phong Lighting Model)通过单独计算光源成分得到综合光照效果,然后添加到材质表面特定的点。冯光照模型的主要由3个部分组成:环境(Ambient)、漫反射(Diffuse)和镜面(Specular)光照。

  1. 环境光照(Ambient Lighting): 即使在黑暗的情况下,世界上也仍然有一些光亮,所以物体永远不会是完全黑暗的。我们使用环境光照来模拟这种情况,也就是无论如何永远都给物体一些颜色。计算这个光照并不涉及任何关于光的方向或人眼观察场景方向。
  2. 漫反射光照(Diffuse Lighting):模拟一个发光物对物体的方向性影响(Directional Impact)。它是冯氏光照模型最显著的组成部分。面向光源的一面比其他面会更亮。
  3. 镜面光照(Specular Lighting):模拟有光泽物体上面出现的亮点。镜面光照的颜色,相比于物体的颜色更倾向于光的颜色。
    在这里插入图片描述

二、Lambert漫反射模型

兰伯特光照模型是经验模型,主要用于计算漫反射光照。漫反射有以下特点:

  1. 反射强度与观察者的角度没有关系,向任何方向的反射都是一样的
  2. 反射强度与光线的入射角度有关系,当入射光垂直于物体表面时,光照最强,随着光线与法线夹角变大反射强度逐渐变小。
    在这里插入图片描述

兰伯特定律(Lambert’s law):反射光线的强度与表面法线和光源方向之间夹角的余弦值成正比,夹角越大,受到的光线照射量越少,当夹角大于90度,光线照射物体背面,此时认为光照强度为0。
在这里插入图片描述
在这里插入图片描述
计算公式:
B d = C I c o s ( θ ) = C I ( L ⋅ N ) B_{d}=\mathbf{C} \mathbf{I}cos(\theta) = \mathbf{C} \mathbf{I}(\mathbf{L}\cdot\mathbf{N}) Bd=CIcos(θ)=CI(LN)
其中:
            C—光的颜色
            I —光照强度
            L—入射光的反方向,已单位化
            N—物体的法向,已单位化

三、Overloal创建材料

Overload中在左下角Assert菜单上右键,可以找到创建材料的入口。其提供了Lambert材质,创建完成后,会在Material Editor面板找到其可配置参数。
在这里插入图片描述
Material Setting是渲染管线的配置,比较通用。Shader Setting是其使用的Shader入参,可以看到其还可以设置一个漫反射贴图,设置漫反射的光颜色。所谓材料就是Shader+unform参数+贴图,其中Shader是其核心计算逻辑。下面就分析一下其使用的Shader。

四、shader分析

Lambert材质使用的Shader在Lambert.glsl文件中,其前半部分是Vertex Shader,后半部分是Fragment Shader,源码如下:

#shader vertex
#version 430 corelayout (location = 0) in vec3 geo_Pos; // 顶点坐标
layout (location = 1) in vec2 geo_TexCoords; // 顶点纹理坐标
layout (location = 2) in vec3 geo_Normal; // 顶点法线layout (std140) uniform EngineUBO // UBO方式传入MVP矩阵
{mat4    ubo_Model;mat4    ubo_View;mat4    ubo_Projection;vec3    ubo_ViewPos;float   ubo_Time;
};out VS_OUT    // 顶点着色器输出
{vec3 FragPos; // 顶点世界坐标系下的坐标vec3 Normal;  // 顶点法线vec2 TexCoords; // 顶点纹理
} vs_out;void main()
{vs_out.FragPos      = vec3(ubo_Model * vec4(geo_Pos, 1.0)); // 使用模型矩阵计算全局坐标系下的坐标vs_out.Normal       = normalize(mat3(transpose(inverse(ubo_Model))) * geo_Normal); // 计算全局坐标系下的法线vs_out.TexCoords    = geo_TexCoords; // 纹理坐标不用变gl_Position = ubo_Projection * ubo_View * vec4(vs_out.FragPos, 1.0); // 计算NDC坐标
}#shader fragment
#version 430 coreout vec4 FRAGMENT_COLOR;in VS_OUT
{vec3 FragPos;vec3 Normal;vec2 TexCoords;
} fs_in;uniform vec4        u_Diffuse = vec4(1.0, 1.0, 1.0, 1.0); // 漫反射光颜色
uniform sampler2D   u_DiffuseMap;   // 漫反射贴图
uniform vec2        u_TextureTiling = vec2(1.0, 1.0); 
uniform vec2        u_TextureOffset = vec2(0.0, 0.0);const vec3 c_lightPosition    = vec3(-9000.0, 10000.0, 11000.0); // 光源位置
const vec3 c_lightDiffuse     = vec3(1.0, 1.0, 1.0);  // 光源强度
const vec3 c_lightAmbient     = vec3(0.3, 0.3, 0.3); // 环境光强度vec3 Lambert(vec3 p_fragPos, vec3 p_normal)
{const float diffuse = max(dot(p_normal, normalize(c_lightPosition - p_fragPos)), 0.0); // LXNreturn clamp(c_lightDiffuse * diffuse + c_lightAmbient, 0.0, 1.0); // 漫反射与环境光叠加
}void main()
{const vec4 diffuse = texture(u_DiffuseMap, u_TextureOffset + vec2(mod(fs_in.TexCoords.x * u_TextureTiling.x, 1), mod(fs_in.TexCoords.y * u_TextureTiling.y, 1))) * u_Diffuse; // 获取贴图颜色FRAGMENT_COLOR = vec4(Lambert(fs_in.FragPos, fs_in.Normal) * diffuse.rgb, diffuse.a);
}

Vertex Shader的入参有顶点坐标、纹理坐标、法线、模型视图投影矩阵。其逻辑很简单,没有特殊操作,计算法线、NDC坐标完事。
Fragment Shader中,先从纹理中获取片元颜色并与设置的环境光颜色相乘,这是最强的光颜色。如果贴图没有设置,那么texture函数返回的是1.0,至于原因前面的文章中分析过。函数Lambert是计算片元光强度,其先计算L,在于法线点乘,最终结果就是 c o s ( θ ) cos(\theta) cos(θ)。漫反射的光强度与环境光强度都是写死的。两者累计,用clamp保证最终结果在0到1之间。可见这种材质没有高光成分。

总结
Lambert是非常简单的漫反射模型,Shader代码很好理解。

这篇关于【Overload游戏引擎细节分析】Lambert材质Shader分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/259912

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结