AI Earth ——开发者模式案例4:浙江省森林区域植被生长分析

本文主要是介绍AI Earth ——开发者模式案例4:浙江省森林区域植被生长分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

浙江省森林区域植被生长分析¶

利用 Modis MCD12Q1 地物分类数据产品和 MODIS MOD13Q1 16天标准植被指数产品。通过对 2021 年 8 月植被指数最大值与近 3 年同期指数 8 月最大值的 3 年均值进行对比,实现对浙江省森林区域植被的空间监测。

初始化环境

import aieaie.Authenticate()
aie.Initialize()

定义矢量区域

region = aie.FeatureCollection('China_Province') \.filter(aie.Filter.eq('province', '浙江省')) \.geometry()map = aie.Map(center=region.getCenter(),height=800,zoom=5
)vis_params = {'color': '#00FF00'
}
map.addLayer(region,vis_params,'region',bounds=region.getBounds()
)
map

获取森林区域掩膜

引用 Modis MCD12Q1 地物分类数据产品,其中 LC_Type1 中数值 1-5 为不同类型的森林植被,通过 aie.Image.lt 实现 2020 年森林植被覆盖地区提取。并将提取到的数据进行地图可视化显示。

LC_Dataset = aie.ImageCollection('MODIS_MCD12Q1_006') \.filterDate('2020-05-01', '2020-05-31')
imgs = LC_Dataset.select(['LC_Type1']).first().clip(region)forest = imgs.lt(aie.Image.constant(6))   # Modis MCD12Q1 1-5为不同类型的森林vis_params = {'bands': 'LC_Type1','min': 1,'max': 17,'palette': [ '#05450a', '#086a10', '#54a708', '#78d203', '#009900', '#c6b044', '#dcd159', '#dade48', '#fbff13', '#b6ff05', '#27ff87', '#c24f44', '#a5a5a5', '#ff6d4c', '#69fff8', '#f9ffa4', '#1c0dff']
}forest_vis = {'bands': 'LC_Type1','min': 0,'max': 1,'palette': [ '#ffffff', '#4fb104']
}map.addLayer(imgs,vis_params,'LC_data',bounds=region.getBounds()
)map.addLayer(forest,forest_vis,'Forest',bounds=region.getBounds()
)
map

植被生长对比

使用 MODIS MOD13Q1 16天标准植被指数产品,利用 aie.ImageCollection.max 获得 2018、2019、2020年、2021 年逐年 8 月 NDVI 最大值,并计算 2018-2020 年 3 年的均值( aie.ImageCollection.mean ),对比 2021 年与过去3年同期均值的比较,应用 updateMask 函数进行森林地区掩膜,确定 2021 年浙江森林植被生长状态。并将最终成果进行地图可视化显示。

ndvi_vis  = {'bands': 'NDVI','min': 0,'max': 8000,'palette': [ '#FFFFFF', '#CE7E45', '#DF923D', '#F1B555', '#FCD163', '#99B718','#74A901', '#66A000', '#529400', '#3E8601', '#207401', '#056201','#004C00', '#023B01', '#012E01', '#011D01', '#011301']
}ndvi_dif_vis = {'min': -1000,'max': 1000,'palette': ['#d7191c', '#ffffff', '#008000']
}map.addLayer( ndvi_avg, ndvi_vis,  'NDVI', bounds=region.getBounds() )map.addLayer( ndvi_dif_forest, ndvi_dif_vis, 'NDVI_dif_forest',  bounds=region.getBounds())map

备注:本案例中仅取2020年森林分类成果作为掩膜文件,仅作为做算子应用介绍,数据成果合理性不做保证。

 

 

 

 

 

这篇关于AI Earth ——开发者模式案例4:浙江省森林区域植被生长分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253169

相关文章

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统