代碼隨想錄算法訓練營|第四十四天|01背包问题 二维、01背包问题 一维、416. 分割等和子集。刷题心得(c++)

本文主要是介绍代碼隨想錄算法訓練營|第四十四天|01背包问题 二维、01背包问题 一维、416. 分割等和子集。刷题心得(c++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

01背包問題 - DP二維數組

01 背包問題描述

暴力解

動態規劃

確認DP數組以及下標的含意

確定遞推公式

01背包问题 一维

一维DP 数組(滾動数組)

動態規劃五部曲

定義DP数組以及其下標含意

遞推公式

初始化

遍歷順序

讀題

416. 分割等和子集

自己看到题目的第一想法

看完代码随想录之后的想法

416. 分割等和子集- 實作

思路

Code

總結

自己实现过程中遇到哪些困难

今日收获,记录一下自己的学习时长

相關資料


01背包問題 - DP二維數組

01 背包問題描述

背包最高可承重重量為j,有i件物品,每件物品的重量為weight[i],並且對應的價值為value[i],每件物品只能用一次

背包放入那些物品可以達到最高的價值

01 的含意,就是每件物品只能用一次,取(1)或不取(0)

暴力解

01背包問題可以使用暴力解來解出來,就是去窮舉每一個東西取或不取最後找出最大的價值和

可以使用回溯算法去做,但時間複雜度會是 $O(2^n)$

動態規劃

確認DP數組以及下標的含意

dp[i][j]: [0, i]物品任意取,可放進容量為j的背包的最大價值。

確定遞推公式

在描述中物品有兩種狀態,一個是不放入背包,一個是放入背包

  1. 物品i 不放入背包: 代表我們要知道的是當下的i不放入背包j的最大價值是多少,那就是dp[i - 1][j],背包容量為j,在不放入i之前最大的是i - 1,所以得出dp[i - 1][j]
  2. 物品i放入背包: 代表我們要知道當下物品i放入背包之後,剩餘的背包重量可得到最大的價值是多少: dp[i - 1][j - weight[i]],這代表的是,背包可承重的重量為j 減去目前i的重量weight[i]並且不包含當前i的重量,最後再加入value[i] 代表當前的價值加上扣除當前重量的背包所能得到的最大價值。最後整合為dp[i - 1][j - weight[i]] + value[i]

那我們是要取最大的數值,所以遞推公式會變成 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i] + value[i]);

01背包问题 一维

一维DP 数組(滾動数組)

藉由壓縮dp[i - 1] 到dp[i] 因為在二維的DP遞推方程裡是dp[i][j] = max( dp[i - 1][j], dp[i - 1][j - weight[i] + value[i])

假設壓縮成一维數組,可以看成假設dp[j]跟dp[j - weight[i]] + value[i] 不用將上一層拷貝而是透過不斷更新dp[j] 來比較值。

其狀態就像是滾動著更新我們的dp数組值,透過維護dp[j]的遍歷順序來維護裡面的值與dp二維数組一致

動態規劃五部曲

定義DP数組以及其下標含意

dp[j]: 背包重量為j的最大價值為dp[j]

遞推公式

與二维數組一樣,dp[j]的數值可以透過當前dpj 以及dp[j - weighti 兩者做比較。

所以遞推公式可以將i去除掉變成

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

初始化

dp数組在dp[0]時,根據定義,需要將dp[0]初始化為0,並且根據遞推公式,每次都會取最大值,所以其他数值也應該初始化為dp数組中最小的值,也就是0

所以在初始化時,將dp数組全部初始化為0

遍歷順序

在二维數組中,每一層的數值都是當前位置的正上方以及左上方的數據得出

從二维壓縮成一维數組,我們需要模擬二维數組的方式

所以根據我們的遞推公式,我們不能使用正序遍歷,不然原本在二维數組中左上方的數據就會被覆蓋掉

而使用倒序可以保證每一層的數據都是由二维數組上一層正上方以及左上方得出的。

透過倒敘更新,確保了在考慮當前物品時,dp[j - weight[i]]仍然代表前一個物品的狀態,但是如果使用正序,那dp[j - weight[i]]就會被提早更新了

如下

假設我們有以下物品和背包:

物品重量: w = [2,3] 物品價值: v = [3,4] 背包最大容量: W = 5

  1. 使用一維數組正序更新時:

    物品\\背包 | 0 | 1 | 2 | 3 | 4 | 5 |    進行的操作
    -----------------------------------    ------------   | 0 | 0 | 0 | 0 | 0 | 0 |    初始化2   | 0 | 0 | 3 | 3 | 3 | 3 |    考慮物品1 (w=2, v=3)3   | 0 | 0 | 3 | 4 | 7 | 7 |    考慮物品2 (w=3, v=4)
    

    當我們考慮物品2時,對於背包容量4,dp[4]是基於dp[1](已被更新的)和dp[4-w[2]=1]計算

  2. 使用一維數組倒序更新時

    物品\\背包 | 0 | 1 | 2 | 3 | 4 | 5 |    進行的操作
    -----------------------------------    ------------   | 0 | 0 | 0 | 0 | 0 | 0 |    初始化2   | 0 | 0 | 3 | 3 | 3 | 3 |    考慮物品1 (w=2, v=3)3   | 0 | 0 | 3 | 4 | 5 | 7 |    考慮物品2 (w=3, v=4)
    

    當我們考慮物品2和背包容量4時,dp[4]是基於dp[1](尚未更新的)和dp[4-w[2]=1]計算的

在影片講解的部分,有個彈幕寫了以下這段,分享給你

一维数组就像走楼梯,你去二楼,就必须从一楼上,去三楼也要从一楼走;倒叙就还好比下楼,想去几楼都不用重复路过其他楼层。

並且需要先遍歷物品在遍歷背包,因為需要上一個物品的值,如果先遍歷背包,則只抓到一個物品的值。

讀題

416. 分割等和子集

自己看到题目的第一想法

看完跟01背包問題沒有辦法有很直接的連結,我大致有想到一個是dp[i][j]代表的是[0 ~ i][j ~ size()]的區間是否相等,但感覺有些地方沒有想清楚,先看題解。

看完代码随想录之后的想法

想法很巧妙如果有一個背包等於所有和的一半,剩下的元素相加也等於剩餘的一半 dp[j]: 容量為j的背包,最大價值為dp[j],並且數組中的重量跟價值可以看成是一致的

並判斷dp[target] == target。dp数組初始化為0 ,並且背包重量設為target + 1

忘記思考到target如果不能被2整除,那就是要return false。

416. 分割等和子集- 實作

思路

  1. 定義DP數組以及下標的含意

    target: 假設子序和的重量為總和的一半,那代表另一半為剩餘的一半。

    假設總和除2餘1代表不會有一個子序和等於另一個子序和

    dp[j] : 背包重量 j 的最大價值為dp[j]

    nums数組中,重量與價值就是nums[i]

  2. 遞推公式

    dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

  3. 根據遞推公式,確定DP數組如何初始化

    dp[0]要初始化為0,其他部分也要更新為正整數下的最小位数0

  4. 確定遍歷順序

    避免覆蓋掉上一次的值,所以要使用倒敘遍歷

  5. 打印dp數組 (debug);

Code

class Solution {
public:bool canPartition(vector<int>& nums) {int target = 0;for(int i = 0; i < nums.size(); i++) {target += nums[i];}if (target % 2 == 1) return false;target /= 2;vector<int> dp(target + 1, 0);for(int i = 0; i < nums.size(); i++) {for(int j = target; j >= nums[i]; j--) {dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}if(dp[target] == target) return true;}return false;}
};

 

總結

自己实现过程中遇到哪些困难

困難點主要是在思考二维數組壓縮成一维數組的部分,這個部分思考比較久,並且在416分割等和子集中,也是遇到了點問題,在思考上沒有想到nums[i]是重量與價值相等,彈點通之後就比較理解了

今日收获,记录一下自己的学习时长

今天大概學了3hr,主要是在理解01背包的思維與想法。

相關資料

● 今日学习的文章链接和视频链接

算法圖解

01背包问题 二维

https://programmercarl.com/背包理论基础01背包-1.html

视频讲解:带你学透0-1背包问题!| 关于背包问题,你不清楚的地方,这里都讲了!| 动态规划经典问题 | 数据结构与算法_哔哩哔哩_bilibili

01背包问题 一维

https://programmercarl.com/背包理论基础01背包-2.html

视频讲解:带你学透01背包问题(滚动数组篇) | 从此对背包问题不再迷茫!_哔哩哔哩_bilibili

416. 分割等和子集

本题是 01背包的应用类题目

https://programmercarl.com/0416.分割等和子集.html

视频讲解:动态规划之背包问题,这个包能装满吗?| LeetCode:416.分割等和子集_哔哩哔哩_bilibili

这篇关于代碼隨想錄算法訓練營|第四十四天|01背包问题 二维、01背包问题 一维、416. 分割等和子集。刷题心得(c++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/251497

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1