探索未来的视觉革命:卷积神经网络的崭新时代(一)

2023-10-20 14:13

本文主要是介绍探索未来的视觉革命:卷积神经网络的崭新时代(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢迎在文章下方留下你的评论和反馈。我期待着与你分享知识、互相学习和建立一个积极的社区。谢谢你的光临,让我们一起踏上这个知识之旅!
请添加图片描述

文章目录

  • 🍋引言
  • 🍋卷积神经网络的基本原理
  • 🍋全连接网络 VS 卷积神经网络
  • 🍋卷积神经网络
    • 🍋卷积层
      • 🍋padding
      • 🍋stride
    • 🍋池化层
  • 🍋完整代码
  • 🍋卷积神经网络的应用领域
  • 🍋总结

🍋引言

当谈到深度学习和计算机视觉时,卷积神经网络(Convolutional Neural Networks,CNNs)一直是热门话题。CNNs是一类专门设计用于处理图像数据的深度学习神经网络,已经在许多领域取得了重大成功,如图像分类、目标检测、人脸识别和自动驾驶。本文将探讨卷积神经网络的基本原理、应用领域以及一些最新趋势。

🍋卷积神经网络的基本原理

  • 卷积层(Convolutional Layer):卷积层是CNN的核心组件,用于提取图像的特征。它通过在输入图像上滑动卷积核,对每个位置进行卷积运算,从而生成特征图。这些特征图捕获了不同位置的局部特征。

  • 池化层(Pooling Layer):池化层用于减小特征图的尺寸,减少计算负担,同时保留最重要的信息。常见的池化操作包括最大池化和平均池化。

  • 全连接层(Fully Connected Layer):全连接层将卷积层和池化层的输出连接在一起,用于执行最终的分类或回归任务。这一层通常包括多个神经元,每个神经元对应一个类别或回归目标。

  • 激活函数(Activation Function):在卷积层和全连接层之间,通常会应用非线性激活函数,如ReLU(Rectified Linear Unit),以引入非线性特性,增强网络的表达能力。

🍋全连接网络 VS 卷积神经网络

在开始学习卷积神经网络前,我们先来回顾一下全连接网络,正如名字,全连接代表了每一层的属于都对后面的输出有影响,当然它们之间是相互影响关联的,下图可以看出,后面会展示卷积神经网络可以拿来对比一下。
在这里插入图片描述
它们之间的差异主要体现在结构性的差异上

  • 全连接网络:在全连接网络中,每个神经元与前一层中的每个神经元相连接。这意味着每个神经元都受到前一层中所有神经元的影响,导致参数数量迅速增加。
  • 卷积神经网络(CNN):CNN使用卷积层,其中神经元仅与输入数据的局部区域相连接,而不是与整个输入相连接。这减少了参数数量,使CNN在处理图像等大型数据时更加高效。

🍋卷积神经网络

下图清楚的展示了一个卷积网络,大概的流程是

  • input的1×28×28经过卷积层5×5的卷积
  • 变为4×24×24的Features maps
  • 再经过2×2的池化层变为4×12×12的Features maps
  • 再经过5×5的卷积层变为8×8×8的Features maps
  • 最后经过2×2的池化层,变为8×4×4的Features maps
  • 这个部分是特征提取。经过特征提取后,进行分类器部分,这里主要是通过全连接将其转化为一维向量,最后再变为十维的输出
    在这里插入图片描述
    这里再进行一些必要的说明,全连接会导致原有的空间结构丧失,卷积神经网络可以保留原有的空间结构
    池化的目的是减小尺寸减低计算复杂度,降低过拟合的风险,保留关键信息(常用的Maxpooling就是取局部最大)
    convolution+subsampling=Feature Extraction

这里我们进行一下简单的扩展(栅格图像和矢量图像

栅格图像是以像素为基础的,适用于复杂的图像和照片,但受限于分辨率和放大时的失真。矢量图像是基于数学形状的,适用于图标、标志和需要无损缩放和编辑的应用。
我们使用卷积神经网络处理的图像通常情况是栅格图像
这些栅格图像由像素组成,每个像素都有自己的颜色信息,通常表示为红、绿、蓝(RGB)或灰度值。CNN的卷积层通过在图像上滑动卷积核来识别特征,这些卷积核与图像的局部区域相连接,从而有效地捕获图像中的各种特征,如边缘、纹理和形状。

🍋卷积层

下图展示了卷积层的基本元素,由input Channel、width、height、output Channel组成,这里取其中的一个Patch,然后将其在进行上下左右的平移。
在这里插入图片描述
或许大家对上图不是很清楚,那么我们来看看下图,或许可以更直观的理解卷积运算
在这里插入图片描述
这里是input 是1×5×5,经过1×3×3的卷积核运算,变为1×3×3的output

注意:这里input的Channel与卷积核的Channel的一致的,最终就会得到如下的output
在这里插入图片描述
那么如果是Channel=3呢,会有什么变化,卷积核与output会产生什么变化,下图清楚的展示流程
在这里插入图片描述
如果堆叠起来,那会变为下图所示
在这里插入图片描述

那么我们再扩展一下,如果有n个Input Channel、m个Output Channel
在这里插入图片描述
注意:这里input Channel的值与卷积核的Channel相同,Output Channel与卷积核的数量相同


使用Pytorch进行演示的话

import torch
in_channels, out_channels= 5, 10
width, height = 100, 100
kernel_size = 3
batch_size = 1
input = torch.randn(batch_size,in_channels,width,height)
conv_layer = torch.nn.Conv2d(in_channels,out_channels,kernel_size=kernel_size)
output = conv_layer(input)
print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

运行代码如下
在这里插入图片描述

接下来再简单介绍一下两个Conv2d的两个可选参数

🍋padding

当padding=1代表为input做一层0填充这样的Output就会和input拥有相同的尺寸了
在这里插入图片描述

import torch
input = [3,4,6,5,7,2,4,6,8,2,1,6,7,8,4,9,7,4,6,2,3,7,5,4,1]
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data
output = conv_layer(input) 
print(output)

运行结果如下
在这里插入图片描述

🍋stride

这个参数是步长的意思,可以减少特征图的尺寸
在这里插入图片描述

import torch
input = [3,4,6,5,7,2,4,6,8,2,1,6,7,8,4,9,7,4,6,2,3,7,5,4,1]
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, stride=2, bias=False)
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data
output = conv_layer(input)
print(output)

运行结果如下=
在这里插入图片描述

🍋池化层

池化层上面已经简单介绍了,这不就不一一赘述
在这里插入图片描述

import torch
input = [3,4,6,5,2,4,6,8,1,6,7,8,9,7,4,6,
]
input = torch.Tensor(input).view(1, 1, 4, 4)
maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2)
output = maxpooling_layer(input)
print(output)

运行结果如下
在这里插入图片描述

🍋完整代码

下图可以清楚的展示了一整个卷积流程
在这里插入图片描述
具体代码如下

import torch
import torch.nn.functional as F
class Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)self.pooling = torch.nn.MaxPool2d(2)self.fc = torch.nn.Linear(320, 10)def forward(self, x):batch_size = x.size(0)x = self.pooling(F.relu(self.conv1(x)))x = self.pooling(F.relu(self.conv2(x)))x = x.view(batch_size, -1) # flattenx = self.fc(x)return x
model = Net()

如果有GPU的话,我们可以使用GPU计算

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 
model.to(device)

训练和测试代码如下

def train(epoch):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = dataoptimizer.zero_grad()# forward + backward + updateoutputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))running_loss = 0.0def test():correct = 0total = 0with torch.no_grad():for data in test_loader:inputs, target = datainputs, target = inputs.to(device), target.to(device)outputs = model(inputs)_, predicted = torch.max(outputs.data, dim=1)total += target.size(0)correct += (predicted == target).sum().item()print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))

🍋卷积神经网络的应用领域

  • 图像分类:CNNs可以识别图像中的对象、动物、人物等,因此被广泛用于图像分类任务。有名的例子包括ImageNet图像分类竞赛中的深度卷积网络。

  • 目标检测:CNNs可以帮助检测图像中的物体,并确定它们的位置。这在自动驾驶、视频监控和医学图像分析中都有重要应用。

  • 人脸识别:CNNs可以识别和验证人脸,这在手机解锁、社交媒体标签和安全监控中都有广泛应用。

  • 自然语言处理:CNNs不仅仅用于图像处理,还可以用于文本分类和自然语言处理任务,如情感分析和垃圾邮件检测。

  • 医学图像分析:CNNs有助于分析医学影像,如X光片、MRI扫描和CT扫描,用于诊断和疾病检测。

🍋总结

卷积神经网络是深度学习的关键技术之一,它在图像处理和其他领域中取得了巨大的成功。随着技术的不断发展,我们可以期待看到更多令人兴奋的进展和应用。如果你对这个领域感兴趣,可以看看刘二大人讲的

本文根据b站刘二大人《PyTorch深度学习实践》完结合集学习后加以整理,文中图文均不属于个人。

请添加图片描述

挑战与创造都是很痛苦的,但是很充实。

这篇关于探索未来的视觉革命:卷积神经网络的崭新时代(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/247640

相关文章

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

读书摘录《控糖革命》

又到了每周推荐时间,这周末给大家推荐一本书《控糖革命》。身体是革命的本钱,只有保持健康的身体,才能保证持久的生产力,希望我的读者都可以身体健康,青春永驻。 推荐前,首先申明在《控糖革命》一书中,作者提出了一些颇具争议的观点,这些观点并没有经过系统的科学论证,但这并不妨碍我们从中获取一些有益的控糖建议。作者通过分享作者的个人经验和研究,为我们提供了一种全新的饮食理念,帮助我们更好地控制血糖峰值

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

内卷时代无人机培训机构如何做大做强

在当今社会,随着科技的飞速发展,“内卷”一词频繁被提及,反映了各行业竞争日益激烈的现象。对于无人机培训行业而言,如何在这样的时代背景下脱颖而出,实现做大做强的目标,成为每个培训机构必须深思的问题。以下是从八个关键方面提出的策略,旨在帮助无人机培训机构在内卷时代中稳步前行。 1. 精准定位市场需求 深入研究市场:通过市场调研,了解无人机行业的最新趋势、政策导向及未来发展方向。 明确目标

轻松录制每一刻:探索2024年免费高清录屏应用

你不会还在用一些社交工具来录屏吧?现在的市面上有不少免费录屏的软件了。别看如软件是免费的,它的功能比起社交工具的录屏功能来说全面的多。这次我就分享几款我用过的录屏工具。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  这个软件的操作方式非常简单,打开软件之后从界面设计就能看出来这个软件操作的便捷性。界面的设计简单明了基本一打眼你就会轻松驾驭啦

国产游戏行业的崛起与挑战:技术创新引领未来

国产游戏行业的崛起与挑战:技术创新引领未来 近年来,国产游戏行业蓬勃发展,技术水平不断提升,许多优秀作品在国际市场上崭露头角。从画面渲染到物理引擎,从AI技术到服务器架构,国产游戏已实现质的飞跃。然而,面对全球游戏市场的激烈竞争,国产游戏技术仍然面临诸多挑战。本文将探讨这些挑战,并展望未来的机遇,深入分析IT技术的创新将如何推动行业发展。 国产游戏技术现状 国产游戏在画面渲染、物理引擎、AI

计算机视觉工程师所需的基本技能

一、编程技能 熟练掌握编程语言 Python:在计算机视觉领域广泛应用,有丰富的库如 OpenCV、TensorFlow、PyTorch 等,方便进行算法实现和模型开发。 C++:运行效率高,适用于对性能要求严格的计算机视觉应用。 数据结构与算法 掌握常见的数据结构(如数组、链表、栈、队列、树、图等)和算法(如排序、搜索、动态规划等),能够优化代码性能,提高算法效率。 二、数学基础

深入探索嵌入式 Linux

摘要:本文深入探究嵌入式 Linux。首先回顾其发展历程,从早期尝试到克服诸多困难逐渐成熟。接着阐述其体系结构,涵盖硬件、内核、文件系统和应用层。开发环境方面包括交叉编译工具链、调试工具和集成开发环境。在应用领域,广泛应用于消费电子、工业控制、汽车电子和智能家居等领域。关键技术有内核裁剪与优化、设备驱动程序开发、实时性增强和电源管理等。最后展望其未来发展趋势,如与物联网融合、人工智能应用、安全性与