MAST: A Memory-Augmented Self-Supervised Tracker论文解读和代码剖析

本文主要是介绍MAST: A Memory-Augmented Self-Supervised Tracker论文解读和代码剖析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

官方代码
作者开源的官方代码有一处错误,在代码剖析部分将指出。有人已经在github上提出了issue,作者一直没回应。我也是在阅读代码的时候发现了这个错误。

背景

VOS任务很少有使用自监督的,即在训练中不借助mask,只用frame image来训练。
作者巧妙的在STM的基础上,将value换成frame自身,使用过去帧重构当前帧作为代理任务(proxy),实现自监督的vos。效果还不错,在davis val上是64的J&F。

核心思想

在这里插入图片描述
仍然是采用STM的memory bank的思想。memory的特征和query的特征会使用transform,得到attention map。但不同的是,stm使用的是经过backbone得到的value,而MAST是直接使用raw frame或者mask。如果是训练阶段;使用raw frame,如果是test阶段,直接使用得到的mask。
在训练阶段,使用当前帧的特征作为query,和memory中的key,value是对应时刻的raw frame,直接使用qkv三元组重构出一个新的帧。这个输出又以当前帧为GT,用huber loss优化。整个过程没有使用到mask GT。在测试阶段,直接使用mask代替raw frame,则每次预测得到的都是重构出来的mask,作为当前帧的输出。

细节

颜色空间

作者认为,RGB颜色空间不适合作为输入,因为是重构作为代理任务。用huber loss是直接优化像素距离的。
比如说重构出来的输出的第i个像素,和raw frame的第i 个像素的matching 距离很小,但实际上他们可能是落在不同目标上。则说明,根据颜色匹配来优化网络,不适合推动模型学习语义特性。
作者也否决了随意丢弃一个channel的做法,因为RGB是关联的,可以通过其他两个通道推理得知另一个通道的像素。
作者使用LAB空间,在随机丢弃一个channel。lab空间解耦性较好。
在这里插入图片描述
作者统计了davis数据集的RGB数值和LAB数值的分布图。可以看出RGB是线性相关的。
输入的颜色值不是互相关联的,则网络将被push学习更好的表征,而并非仅仅依赖局部颜色信息。

loss

作为GT,raw frame使用RGB颜色空间。使用smooth l1 loss(huber loss)
在这里插入图片描述

 outputs = F.interpolate(outputs, (h, w), mode='bilinear')loss = F.smooth_l1_loss(outputs*20, tar_y*20, reduction='mean')

获取ROI区域

作者分析了STM的劣势,就是memory bank式的matching,需要的内存和计算量都很大,O(T*H*W*H*W)。
如果先获得了目标的大致位置,每一个pixel需要匹配的数目就会少很多(原始的是T*H*W)。
作者提出了一个两阶段的ROI localization。假设对query的第i个位置 q i q_i qi进行匹配。首先使用一个网格(应用空洞技巧),围绕在key的第i个位置上,得到网络上的特征,和 q i q_i qi做匹配(dot运算),得到的相似性系数直接加权相对坐标(和直推式vos的做法类似),这里是应用soft argmax,得到离第i个位置最相似的offset。
第二步就是围绕新的位置(i+offset),resample出一个小区域,作为需要匹配的对象。
在这里插入图片描述

其他细节

网络使用resnet18,修改stride,最低分辨率为1/4。训练也是先pretrain,在main train,接着dynamic train。

代码剖析

主要看看ROI那步。其他的步骤都很好读
作者先是在init里面设置了两种sampler。第一个是带dilate的,第二种是没有dilation的。前者用于long term的sampler,后者用于short term。

self.correlation_sampler_dilated = [SpatialCorrelationSampler(kernel_size=1,patch_size=self.memory_patch_P,stride=1,padding=0,dilation=1,dilation_patch=dirate) for dirate in range(2,6)]self.correlation_sampler = SpatialCorrelationSampler(kernel_size=1,patch_size=self.P,stride=1,padding=0,dilation=1)

在forward里面,大致有下面几个步骤:

  • 先对long term key进行第一步粗糙采样,得到ROI的位置,然后在截取主要特征作为matching对象得到系数。
  • 在对short term key同样操作
  • 用得到的offset,对raw frames,也截取对应的value。
  • 所有的attention map以及value都齐了,开始使用qkv公式得到输出。
 for searching_index in range(nsearch):  # long term: need dilation##### GET OFFSET HERE.  (b,h,w,2)samplerindex = dirates[searching_index]-2coarse_search_correlation = self.correlation_sampler_dilated[samplerindex](feats_t, feats_r[searching_index])  # b, p, p, h, wcoarse_search_correlation = coarse_search_correlation.reshape(b, self.memory_patch_N, h*w)coarse_search_correlation = F.softmax(coarse_search_correlation, dim=1)coarse_search_correlation = coarse_search_correlation.reshape(b,self.memory_patch_P,self.memory_patch_P,h,w,1)_y, _x = torch.meshgrid(torch.arange(-self.memory_patch_R,self.memory_patch_R+1),torch.arange(-self.memory_patch_R,self.memory_patch_R+1))grid = torch.stack([_x, _y], dim=-1).unsqueeze(-2).unsqueeze(-2)\.reshape(1,self.memory_patch_P,self.memory_patch_P,1,1,2).contiguous().float().to(coarse_search_correlation.device)# 每个query像素在mem bank中的一帧该以哪个位置为中心采样offset0 = (coarse_search_correlation * grid ).sum(1).sum(1) * dirates[searching_index]  # 1,h,w,2col_0 = deform_im2col(feats_r[searching_index], offset0, kernel_size=self.P)  # b,c*N,h*wcol_0 = col_0.reshape(b,c,N,h,w)##corr = (feats_t.unsqueeze(2) * col_0).sum(1)   # (b, N, h, w)corr = corr.reshape([b, self.P * self.P, h * w])corrs.append(corr)
 for ind in range(nsearch, nref):  # short termcorrs.append(self.correlation_sampler(feats_t, feats_r[ind]))_, _, _, h1, w1 = corrs[-1].size()corrs[ind] = corrs[ind].reshape([b, self.P*self.P, h1*w1])

得到T帧的匹配系数的softmax值

  corr = torch.cat(corrs, 1)  # b,nref*N,HWcorr = F.softmax(corr, dim=1)corr = corr.unsqueeze(1)

得到value

im_col0 = [deform_im2col(qr[i], offset0, kernel_size=self.P)  for i in range(nsearch)]# b, 3*N, h*w
im_col1 = [F.unfold(r, kernel_size=self.P, padding=self.R) for r in qr[nsearch:]]
image_uf = im_col0 + im_col1  # memory value list.

得到预测结果

  out = (corr * image_uf).sum(2).reshape([b,qr[0].size(1),h,w])

采用使用的是spatial correlation sapmle,是计算光流的cost valume的重要操作。不知道啥是cost valume可以去知乎搜索一下。作者这里用他是计算 q i q_i qi和在key上以i为中心的网格中被选取的特征的相似度。

所谓的截取,就是已知 q i q_i qi应该在哪个位置截取,就使用grid sample取出来。

这篇关于MAST: A Memory-Augmented Self-Supervised Tracker论文解读和代码剖析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/247398

相关文章

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

解决idea启动项目报错java: OutOfMemoryError: insufficient memory

《解决idea启动项目报错java:OutOfMemoryError:insufficientmemory》:本文主要介绍解决idea启动项目报错java:OutOfMemoryError... 目录原因:解决:总结 原因:在Java中遇到OutOfMemoryError: insufficient me

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

利用Python在万圣节实现比心弹窗告白代码

《利用Python在万圣节实现比心弹窗告白代码》:本文主要介绍关于利用Python在万圣节实现比心弹窗告白代码的相关资料,每个弹窗会显示一条温馨提示,程序通过参数方程绘制爱心形状,并使用多线程技术... 目录前言效果预览要点1. 爱心曲线方程2. 显示温馨弹窗函数(详细拆解)2.1 函数定义和延迟机制2.2

Springmvc常用的注解代码示例

《Springmvc常用的注解代码示例》本文介绍了SpringMVC中常用的控制器和请求映射注解,包括@Controller、@RequestMapping等,以及请求参数绑定注解,如@Request... 目录一、控制器与请求映射注解二、请求参数绑定注解三、其他常用注解(扩展)四、注解使用注意事项一、控制

Java序列化之serialVersionUID的用法解读

《Java序列化之serialVersionUID的用法解读》Java序列化之serialVersionUID:本文介绍了Java对象的序列化和反序列化过程,强调了serialVersionUID的作... 目录JavChina编程a序列化之serialVersionUID什么是序列化为什么要序列化serialV

C++简单日志系统实现代码示例

《C++简单日志系统实现代码示例》日志系统是成熟软件中的一个重要组成部分,其记录软件的使用和运行行为,方便事后进行故障分析、数据统计等,:本文主要介绍C++简单日志系统实现的相关资料,文中通过代码... 目录前言Util.hppLevel.hppLogMsg.hppFormat.hppSink.hppBuf

VS Code中的Python代码格式化插件示例讲解

《VSCode中的Python代码格式化插件示例讲解》在Java开发过程中,代码的规范性和可读性至关重要,一个团队中如果每个开发者的代码风格各异,会给代码的维护、审查和协作带来极大的困难,这篇文章主... 目录前言如何安装与配置使用建议与技巧如何选择总结前言在 VS Code 中,有几款非常出色的 pyt