MAST: A Memory-Augmented Self-Supervised Tracker论文解读和代码剖析

本文主要是介绍MAST: A Memory-Augmented Self-Supervised Tracker论文解读和代码剖析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

官方代码
作者开源的官方代码有一处错误,在代码剖析部分将指出。有人已经在github上提出了issue,作者一直没回应。我也是在阅读代码的时候发现了这个错误。

背景

VOS任务很少有使用自监督的,即在训练中不借助mask,只用frame image来训练。
作者巧妙的在STM的基础上,将value换成frame自身,使用过去帧重构当前帧作为代理任务(proxy),实现自监督的vos。效果还不错,在davis val上是64的J&F。

核心思想

在这里插入图片描述
仍然是采用STM的memory bank的思想。memory的特征和query的特征会使用transform,得到attention map。但不同的是,stm使用的是经过backbone得到的value,而MAST是直接使用raw frame或者mask。如果是训练阶段;使用raw frame,如果是test阶段,直接使用得到的mask。
在训练阶段,使用当前帧的特征作为query,和memory中的key,value是对应时刻的raw frame,直接使用qkv三元组重构出一个新的帧。这个输出又以当前帧为GT,用huber loss优化。整个过程没有使用到mask GT。在测试阶段,直接使用mask代替raw frame,则每次预测得到的都是重构出来的mask,作为当前帧的输出。

细节

颜色空间

作者认为,RGB颜色空间不适合作为输入,因为是重构作为代理任务。用huber loss是直接优化像素距离的。
比如说重构出来的输出的第i个像素,和raw frame的第i 个像素的matching 距离很小,但实际上他们可能是落在不同目标上。则说明,根据颜色匹配来优化网络,不适合推动模型学习语义特性。
作者也否决了随意丢弃一个channel的做法,因为RGB是关联的,可以通过其他两个通道推理得知另一个通道的像素。
作者使用LAB空间,在随机丢弃一个channel。lab空间解耦性较好。
在这里插入图片描述
作者统计了davis数据集的RGB数值和LAB数值的分布图。可以看出RGB是线性相关的。
输入的颜色值不是互相关联的,则网络将被push学习更好的表征,而并非仅仅依赖局部颜色信息。

loss

作为GT,raw frame使用RGB颜色空间。使用smooth l1 loss(huber loss)
在这里插入图片描述

 outputs = F.interpolate(outputs, (h, w), mode='bilinear')loss = F.smooth_l1_loss(outputs*20, tar_y*20, reduction='mean')

获取ROI区域

作者分析了STM的劣势,就是memory bank式的matching,需要的内存和计算量都很大,O(T*H*W*H*W)。
如果先获得了目标的大致位置,每一个pixel需要匹配的数目就会少很多(原始的是T*H*W)。
作者提出了一个两阶段的ROI localization。假设对query的第i个位置 q i q_i qi进行匹配。首先使用一个网格(应用空洞技巧),围绕在key的第i个位置上,得到网络上的特征,和 q i q_i qi做匹配(dot运算),得到的相似性系数直接加权相对坐标(和直推式vos的做法类似),这里是应用soft argmax,得到离第i个位置最相似的offset。
第二步就是围绕新的位置(i+offset),resample出一个小区域,作为需要匹配的对象。
在这里插入图片描述

其他细节

网络使用resnet18,修改stride,最低分辨率为1/4。训练也是先pretrain,在main train,接着dynamic train。

代码剖析

主要看看ROI那步。其他的步骤都很好读
作者先是在init里面设置了两种sampler。第一个是带dilate的,第二种是没有dilation的。前者用于long term的sampler,后者用于short term。

self.correlation_sampler_dilated = [SpatialCorrelationSampler(kernel_size=1,patch_size=self.memory_patch_P,stride=1,padding=0,dilation=1,dilation_patch=dirate) for dirate in range(2,6)]self.correlation_sampler = SpatialCorrelationSampler(kernel_size=1,patch_size=self.P,stride=1,padding=0,dilation=1)

在forward里面,大致有下面几个步骤:

  • 先对long term key进行第一步粗糙采样,得到ROI的位置,然后在截取主要特征作为matching对象得到系数。
  • 在对short term key同样操作
  • 用得到的offset,对raw frames,也截取对应的value。
  • 所有的attention map以及value都齐了,开始使用qkv公式得到输出。
 for searching_index in range(nsearch):  # long term: need dilation##### GET OFFSET HERE.  (b,h,w,2)samplerindex = dirates[searching_index]-2coarse_search_correlation = self.correlation_sampler_dilated[samplerindex](feats_t, feats_r[searching_index])  # b, p, p, h, wcoarse_search_correlation = coarse_search_correlation.reshape(b, self.memory_patch_N, h*w)coarse_search_correlation = F.softmax(coarse_search_correlation, dim=1)coarse_search_correlation = coarse_search_correlation.reshape(b,self.memory_patch_P,self.memory_patch_P,h,w,1)_y, _x = torch.meshgrid(torch.arange(-self.memory_patch_R,self.memory_patch_R+1),torch.arange(-self.memory_patch_R,self.memory_patch_R+1))grid = torch.stack([_x, _y], dim=-1).unsqueeze(-2).unsqueeze(-2)\.reshape(1,self.memory_patch_P,self.memory_patch_P,1,1,2).contiguous().float().to(coarse_search_correlation.device)# 每个query像素在mem bank中的一帧该以哪个位置为中心采样offset0 = (coarse_search_correlation * grid ).sum(1).sum(1) * dirates[searching_index]  # 1,h,w,2col_0 = deform_im2col(feats_r[searching_index], offset0, kernel_size=self.P)  # b,c*N,h*wcol_0 = col_0.reshape(b,c,N,h,w)##corr = (feats_t.unsqueeze(2) * col_0).sum(1)   # (b, N, h, w)corr = corr.reshape([b, self.P * self.P, h * w])corrs.append(corr)
 for ind in range(nsearch, nref):  # short termcorrs.append(self.correlation_sampler(feats_t, feats_r[ind]))_, _, _, h1, w1 = corrs[-1].size()corrs[ind] = corrs[ind].reshape([b, self.P*self.P, h1*w1])

得到T帧的匹配系数的softmax值

  corr = torch.cat(corrs, 1)  # b,nref*N,HWcorr = F.softmax(corr, dim=1)corr = corr.unsqueeze(1)

得到value

im_col0 = [deform_im2col(qr[i], offset0, kernel_size=self.P)  for i in range(nsearch)]# b, 3*N, h*w
im_col1 = [F.unfold(r, kernel_size=self.P, padding=self.R) for r in qr[nsearch:]]
image_uf = im_col0 + im_col1  # memory value list.

得到预测结果

  out = (corr * image_uf).sum(2).reshape([b,qr[0].size(1),h,w])

采用使用的是spatial correlation sapmle,是计算光流的cost valume的重要操作。不知道啥是cost valume可以去知乎搜索一下。作者这里用他是计算 q i q_i qi和在key上以i为中心的网格中被选取的特征的相似度。

所谓的截取,就是已知 q i q_i qi应该在哪个位置截取,就使用grid sample取出来。

这篇关于MAST: A Memory-Augmented Self-Supervised Tracker论文解读和代码剖析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/247398

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引