04 MIT线性代数-矩阵的LU分解 Factorization into A=LU

2023-10-20 02:03

本文主要是介绍04 MIT线性代数-矩阵的LU分解 Factorization into A=LU,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目的: 从矩阵的角度理解高斯消元法, 完成LU分解得到A=LU

1.矩阵乘积的逆矩阵 Inverse of a product

2.矩阵乘积的转置 Transpose of a product

3.转置矩阵的逆矩阵 Inverse of a transpose

4.矩阵的LU分解

U为上三角阵(Upper triangular matrix), L为下三角阵(Lower triangular matrix), 通过分解得到对角阵D(diagonal matrix)

4.1 三阶矩阵不需要换行进行消元的情况则有: (no row exchanges)

设定一组消元矩阵,其中E31为单位阵I,其它两个消元矩阵如下:

row3-5newrow2=row3-5(row2-2row1)=row3-5row2+10 row1

E(left of A) EA=U

4.2 inverses (reverse order)

右侧操作则不会有这种情况发生,运算顺序会发生变化

E(left of U) A=LU

if no row exchanges, multipliers go directly into L  没有多余的交叉项出现是LU分解要优于EA=U这种形式的原因之一

5. How many operations on n×n matrix A? 消元法所需运算量

6. 置换矩阵Permutation Matrix

如果主元的位置出现了0,就需要进行“行交换”。我们可以通过左乘一个置换矩阵(Permutation Matrix)实现“行交换”的操作. 置换矩阵每一行或者每一列只有一个元素是1,其它都是0

为了实现33矩阵的第一行与第二行的交换, 有6个置换矩阵

nxn矩阵存在着n!个置换矩阵

置换矩阵的逆矩阵

某阶的置换矩阵集合而言,置换矩阵的两两乘积仍在这个集合中,置换矩阵的逆矩阵也在此集合中。置换矩阵的逆矩阵即为它的转置 

这篇关于04 MIT线性代数-矩阵的LU分解 Factorization into A=LU的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/243870

相关文章

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

取得 Git 仓库 —— Git 学习笔记 04

取得 Git 仓库 —— Git 学习笔记 04 我认为, Git 的学习分为两大块:一是工作区、索引、本地版本库之间的交互;二是本地版本库和远程版本库之间的交互。第一块是基础,第二块是难点。 下面,我们就围绕着第一部分内容来学习,先不考虑远程仓库,只考虑本地仓库。 怎样取得项目的 Git 仓库? 有两种取得 Git 项目仓库的方法。第一种是在本地创建一个新的仓库,第二种是把其他地方的某个

浙大数据结构:04-树7 二叉搜索树的操作集

这道题答案都在PPT上,所以先学会再写的话并不难。 1、BinTree Insert( BinTree BST, ElementType X ) 递归实现,小就进左子树,大就进右子树。 为空就新建结点插入。 BinTree Insert( BinTree BST, ElementType X ){if(!BST){BST=(BinTree)malloc(sizeof(struct TNo

读软件设计的要素04概念的关系

1. 概念的关系 1.1. 概念是独立的,彼此间无须相互依赖 1.1.1. 一个概念是应该独立地被理解、设计和实现的 1.1.2. 独立性是概念的简单性和可重用性的关键 1.2. 软件存在依赖性 1.2.1. 不是说一个概念需要依赖另一个概念才能正确运行 1.2.2. 只有当一个概念存在时,包含另一个概念才有意义 1.3. 概念依赖关系图简要概括了软件的概念和概念存在的理

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

[苍穹外卖]-04菜品管理接口开发

效果预览 新增菜品 需求分析 查看产品原型分析需求, 包括用到哪些接口, 业务的限制规则 业务规则 菜品名称必须是唯一的菜品必须属于某个分类下, 不能单独存在新增菜品时可以根据情况选择菜品的口味每个菜品必须对应一张图片 接口设计 根据类型查询分类接口 文件上传接口 新增菜品接口 数据表设计 设计dish菜品表 和 dish_fl

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat