456 车站分级(拓扑排序求解差分约束问题--平方级别的建图优化)

本文主要是介绍456 车站分级(拓扑排序求解差分约束问题--平方级别的建图优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 问题描述:

一条单向的铁路线上,依次有编号为 1,2, …, n 的 n 个火车站。每个火车站都有一个级别,最低为 1 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站、终点站之间所有级别大于等于火车站 x 的都必须停靠。(注意:起始站和终点站自然也算作事先已知需要停靠的站点) 例如,下表是 5 趟车次的运行情况。其中,前 4 趟车次均满足要求,而第 5 趟车次由于停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦为 2 级)而不满足要求。现有 m 趟车次的运行情况(全部满足要求),试推算这 n 个火车站至少分为几个不同的级别。

输入格式

第一行包含 2 个正整数 n,m,用一个空格隔开。第 i+1 行(1 ≤ i ≤ m)中,首先是一个正整数 si(2≤si≤n),表示第 i 趟车次有 si 个停靠站;接下来有 si 个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个空格隔开。输入保证所有的车次都满足要求。

输出格式

输出只有一行,包含一个正整数,即 n 个火车站最少划分的级别数。

数据范围

1 ≤ n,m ≤ 1000

输入样例:

9 3 
4 1 3 5 6 
3 3 5 6 
3 1 5 9 

输出样例:

3
来源:https://www.acwing.com/problem/content/description/458/

2. 思路分析:

首先需要屡清楚题目的意思,题目的主要意思是有若干趟的车次,每趟车次有对应的停车站编号,停靠编号有对应的等级,如果火车在某个停靠站x停靠了,所有从始发站到终点站中停靠站等级大于等于x这个车站的等级的车站都需要停靠,这就意味着从始发站到终点站中没有停靠的车站编号等级都是至少比x小1,这里就存在一个小于的不等式关系,所以我们想到图论中的差分约束(不等式关系约束的图论问题),我们可以将每趟车次中从始发站到终点站中停靠车站的编号与未停靠车站的编号分为两个集合,左边的点集为未停靠的车站,右边的集合为停靠的车站,左边集合中的每一个点向右边集合的每一个点,所有边权都是1:

所以我们可以使用一个标记数组st,将所有输入的停靠站的编号标记为1,那么从始发站到终点站中未标记的车站编号就是未停靠的车站,分别对应上图中左边与右边的点的集合,因为左边未停靠的车站的等级都比右边停靠车站的等级至少少1,所以两个集合的边的权重为1,对于每趟车次中分为两个集合进行连边,因为题目中给出的数据都是有解的,所以最终的图是有向无环图,而且因为是差分约束求解最小值的问题,所以我们需要求解单源最长路径,因为每一个车站的等级至少是1,所以我们可以建一个虚拟源点,虚拟源点向其余点连一条长度为1的边,但是在实际写的时候可以发现与将所有点的距离初始化为1的做法是等价的,所以我们只需要将n个点的距离初始化为1即可,具体的做法是:先求解出拓扑排序然后根据拓扑排序的顺序求解单源最长路径,最终求解所有点的最大值那么就是答案。但是这样建图其实是n ^ 2级别的,每一个点都需要向其余点连一条权重为1的边,如果有1000趟车次,每趟车次停靠站的数量为500,所以建边的数量为O(1000 * 500 * 500) = 2.5 * 10 ^ 8,所以肯定会超内存,如果有邻接矩阵来存储其实空间倒是可以但是也需要循环10 ^ 8次,所以也可能会超时,对于这种n ^ 2级别的建图其实有一个比较常用的优化技巧,我们在两个子集建立一个虚拟源点,左边集合的点向源点连一条权重为0的边,虚拟源点向右边集合连一条权重为1的边,可以发现左边节点有右边节点是等价的,从左边的集合中的每一个点可以到达右边集合的每一个点,但是建边的数量其实为O(m),这样建边的时候就从平方级别降到了线性级别。

3. 代码如下:

import collections
from typing import Listclass Solution:# 拓扑排序def topsort(self, n: int, d: List[int], g: List[List[int]], res: List[int]):q = collections.deque()for i in range(1, n + 1):if d[i] == 0:q.append(i)res.append(i)while q:p = q.popleft()for next in g[p]:d[next[0]] -= 1if d[next[0]] == 0:q.append(next[0])res.append(next[0])def process(self):n, m = map(int, input().split())g = [list() for i in range(n + m + 10)]d = [0] * (n + m + 10)for i in range(1, m + 1):st = [0] * (n + 10)s = list(map(int, input().split()))# 始发站与终点站start, end = s[1], s[-1]for j in range(1, len(s)):# 注意是s[j]而不是j, 将所有的停靠站编号标记为1st[s[j]] = 1# 建图的优化方式, 建立一个中间节点ver = n + ifor j in range(start, end + 1):if st[j] == 0:g[j].append((ver, 0))d[ver] += 1else:g[ver].append((j, 1))d[j] += 1res = list()# 拓扑排序的节点个数为n + m, 每一趟车次多了一个源点所有拓扑排序总个数为n + mself.topsort(n + m, d, g, res)dis = [0] * (n + m + 10)for i in range(1, n + 1): dis[i] = 1# 从前往后递推求解最长路径for i in range(len(res)):ver = res[i]for next in g[ver]:dis[next[0]] = max(dis[next[0]], dis[ver] + next[1])ans = 0for i in range(1, n + 1):# 求解等级的最大值ans = max(ans, dis[i])return ansif __name__ == "__main__":print(Solution().process())

这篇关于456 车站分级(拓扑排序求解差分约束问题--平方级别的建图优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/235992

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监