456 车站分级(拓扑排序求解差分约束问题--平方级别的建图优化)

本文主要是介绍456 车站分级(拓扑排序求解差分约束问题--平方级别的建图优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 问题描述:

一条单向的铁路线上,依次有编号为 1,2, …, n 的 n 个火车站。每个火车站都有一个级别,最低为 1 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站、终点站之间所有级别大于等于火车站 x 的都必须停靠。(注意:起始站和终点站自然也算作事先已知需要停靠的站点) 例如,下表是 5 趟车次的运行情况。其中,前 4 趟车次均满足要求,而第 5 趟车次由于停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦为 2 级)而不满足要求。现有 m 趟车次的运行情况(全部满足要求),试推算这 n 个火车站至少分为几个不同的级别。

输入格式

第一行包含 2 个正整数 n,m,用一个空格隔开。第 i+1 行(1 ≤ i ≤ m)中,首先是一个正整数 si(2≤si≤n),表示第 i 趟车次有 si 个停靠站;接下来有 si 个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个空格隔开。输入保证所有的车次都满足要求。

输出格式

输出只有一行,包含一个正整数,即 n 个火车站最少划分的级别数。

数据范围

1 ≤ n,m ≤ 1000

输入样例:

9 3 
4 1 3 5 6 
3 3 5 6 
3 1 5 9 

输出样例:

3
来源:https://www.acwing.com/problem/content/description/458/

2. 思路分析:

首先需要屡清楚题目的意思,题目的主要意思是有若干趟的车次,每趟车次有对应的停车站编号,停靠编号有对应的等级,如果火车在某个停靠站x停靠了,所有从始发站到终点站中停靠站等级大于等于x这个车站的等级的车站都需要停靠,这就意味着从始发站到终点站中没有停靠的车站编号等级都是至少比x小1,这里就存在一个小于的不等式关系,所以我们想到图论中的差分约束(不等式关系约束的图论问题),我们可以将每趟车次中从始发站到终点站中停靠车站的编号与未停靠车站的编号分为两个集合,左边的点集为未停靠的车站,右边的集合为停靠的车站,左边集合中的每一个点向右边集合的每一个点,所有边权都是1:

所以我们可以使用一个标记数组st,将所有输入的停靠站的编号标记为1,那么从始发站到终点站中未标记的车站编号就是未停靠的车站,分别对应上图中左边与右边的点的集合,因为左边未停靠的车站的等级都比右边停靠车站的等级至少少1,所以两个集合的边的权重为1,对于每趟车次中分为两个集合进行连边,因为题目中给出的数据都是有解的,所以最终的图是有向无环图,而且因为是差分约束求解最小值的问题,所以我们需要求解单源最长路径,因为每一个车站的等级至少是1,所以我们可以建一个虚拟源点,虚拟源点向其余点连一条长度为1的边,但是在实际写的时候可以发现与将所有点的距离初始化为1的做法是等价的,所以我们只需要将n个点的距离初始化为1即可,具体的做法是:先求解出拓扑排序然后根据拓扑排序的顺序求解单源最长路径,最终求解所有点的最大值那么就是答案。但是这样建图其实是n ^ 2级别的,每一个点都需要向其余点连一条权重为1的边,如果有1000趟车次,每趟车次停靠站的数量为500,所以建边的数量为O(1000 * 500 * 500) = 2.5 * 10 ^ 8,所以肯定会超内存,如果有邻接矩阵来存储其实空间倒是可以但是也需要循环10 ^ 8次,所以也可能会超时,对于这种n ^ 2级别的建图其实有一个比较常用的优化技巧,我们在两个子集建立一个虚拟源点,左边集合的点向源点连一条权重为0的边,虚拟源点向右边集合连一条权重为1的边,可以发现左边节点有右边节点是等价的,从左边的集合中的每一个点可以到达右边集合的每一个点,但是建边的数量其实为O(m),这样建边的时候就从平方级别降到了线性级别。

3. 代码如下:

import collections
from typing import Listclass Solution:# 拓扑排序def topsort(self, n: int, d: List[int], g: List[List[int]], res: List[int]):q = collections.deque()for i in range(1, n + 1):if d[i] == 0:q.append(i)res.append(i)while q:p = q.popleft()for next in g[p]:d[next[0]] -= 1if d[next[0]] == 0:q.append(next[0])res.append(next[0])def process(self):n, m = map(int, input().split())g = [list() for i in range(n + m + 10)]d = [0] * (n + m + 10)for i in range(1, m + 1):st = [0] * (n + 10)s = list(map(int, input().split()))# 始发站与终点站start, end = s[1], s[-1]for j in range(1, len(s)):# 注意是s[j]而不是j, 将所有的停靠站编号标记为1st[s[j]] = 1# 建图的优化方式, 建立一个中间节点ver = n + ifor j in range(start, end + 1):if st[j] == 0:g[j].append((ver, 0))d[ver] += 1else:g[ver].append((j, 1))d[j] += 1res = list()# 拓扑排序的节点个数为n + m, 每一趟车次多了一个源点所有拓扑排序总个数为n + mself.topsort(n + m, d, g, res)dis = [0] * (n + m + 10)for i in range(1, n + 1): dis[i] = 1# 从前往后递推求解最长路径for i in range(len(res)):ver = res[i]for next in g[ver]:dis[next[0]] = max(dis[next[0]], dis[ver] + next[1])ans = 0for i in range(1, n + 1):# 求解等级的最大值ans = max(ans, dis[i])return ansif __name__ == "__main__":print(Solution().process())

这篇关于456 车站分级(拓扑排序求解差分约束问题--平方级别的建图优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/235992

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

mysql主从及遇到的问题解决

《mysql主从及遇到的问题解决》本文详细介绍了如何使用Docker配置MySQL主从复制,首先创建了两个文件夹并分别配置了`my.cnf`文件,通过执行脚本启动容器并配置好主从关系,文中还提到了一些... 目录mysql主从及遇到问题解决遇到的问题说明总结mysql主从及遇到问题解决1.基于mysql

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

MAVEN3.9.x中301问题及解决方法

《MAVEN3.9.x中301问题及解决方法》本文主要介绍了使用MAVEN3.9.x中301问题及解决方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录01、背景02、现象03、分析原因04、解决方案及验证05、结语本文主要是针对“构建加速”需求交

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6