456 车站分级(拓扑排序求解差分约束问题--平方级别的建图优化)

本文主要是介绍456 车站分级(拓扑排序求解差分约束问题--平方级别的建图优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 问题描述:

一条单向的铁路线上,依次有编号为 1,2, …, n 的 n 个火车站。每个火车站都有一个级别,最低为 1 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 x,则始发站、终点站之间所有级别大于等于火车站 x 的都必须停靠。(注意:起始站和终点站自然也算作事先已知需要停靠的站点) 例如,下表是 5 趟车次的运行情况。其中,前 4 趟车次均满足要求,而第 5 趟车次由于停靠了 3 号火车站(2 级)却未停靠途经的 6 号火车站(亦为 2 级)而不满足要求。现有 m 趟车次的运行情况(全部满足要求),试推算这 n 个火车站至少分为几个不同的级别。

输入格式

第一行包含 2 个正整数 n,m,用一个空格隔开。第 i+1 行(1 ≤ i ≤ m)中,首先是一个正整数 si(2≤si≤n),表示第 i 趟车次有 si 个停靠站;接下来有 si 个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个空格隔开。输入保证所有的车次都满足要求。

输出格式

输出只有一行,包含一个正整数,即 n 个火车站最少划分的级别数。

数据范围

1 ≤ n,m ≤ 1000

输入样例:

9 3 
4 1 3 5 6 
3 3 5 6 
3 1 5 9 

输出样例:

3
来源:https://www.acwing.com/problem/content/description/458/

2. 思路分析:

首先需要屡清楚题目的意思,题目的主要意思是有若干趟的车次,每趟车次有对应的停车站编号,停靠编号有对应的等级,如果火车在某个停靠站x停靠了,所有从始发站到终点站中停靠站等级大于等于x这个车站的等级的车站都需要停靠,这就意味着从始发站到终点站中没有停靠的车站编号等级都是至少比x小1,这里就存在一个小于的不等式关系,所以我们想到图论中的差分约束(不等式关系约束的图论问题),我们可以将每趟车次中从始发站到终点站中停靠车站的编号与未停靠车站的编号分为两个集合,左边的点集为未停靠的车站,右边的集合为停靠的车站,左边集合中的每一个点向右边集合的每一个点,所有边权都是1:

所以我们可以使用一个标记数组st,将所有输入的停靠站的编号标记为1,那么从始发站到终点站中未标记的车站编号就是未停靠的车站,分别对应上图中左边与右边的点的集合,因为左边未停靠的车站的等级都比右边停靠车站的等级至少少1,所以两个集合的边的权重为1,对于每趟车次中分为两个集合进行连边,因为题目中给出的数据都是有解的,所以最终的图是有向无环图,而且因为是差分约束求解最小值的问题,所以我们需要求解单源最长路径,因为每一个车站的等级至少是1,所以我们可以建一个虚拟源点,虚拟源点向其余点连一条长度为1的边,但是在实际写的时候可以发现与将所有点的距离初始化为1的做法是等价的,所以我们只需要将n个点的距离初始化为1即可,具体的做法是:先求解出拓扑排序然后根据拓扑排序的顺序求解单源最长路径,最终求解所有点的最大值那么就是答案。但是这样建图其实是n ^ 2级别的,每一个点都需要向其余点连一条权重为1的边,如果有1000趟车次,每趟车次停靠站的数量为500,所以建边的数量为O(1000 * 500 * 500) = 2.5 * 10 ^ 8,所以肯定会超内存,如果有邻接矩阵来存储其实空间倒是可以但是也需要循环10 ^ 8次,所以也可能会超时,对于这种n ^ 2级别的建图其实有一个比较常用的优化技巧,我们在两个子集建立一个虚拟源点,左边集合的点向源点连一条权重为0的边,虚拟源点向右边集合连一条权重为1的边,可以发现左边节点有右边节点是等价的,从左边的集合中的每一个点可以到达右边集合的每一个点,但是建边的数量其实为O(m),这样建边的时候就从平方级别降到了线性级别。

3. 代码如下:

import collections
from typing import Listclass Solution:# 拓扑排序def topsort(self, n: int, d: List[int], g: List[List[int]], res: List[int]):q = collections.deque()for i in range(1, n + 1):if d[i] == 0:q.append(i)res.append(i)while q:p = q.popleft()for next in g[p]:d[next[0]] -= 1if d[next[0]] == 0:q.append(next[0])res.append(next[0])def process(self):n, m = map(int, input().split())g = [list() for i in range(n + m + 10)]d = [0] * (n + m + 10)for i in range(1, m + 1):st = [0] * (n + 10)s = list(map(int, input().split()))# 始发站与终点站start, end = s[1], s[-1]for j in range(1, len(s)):# 注意是s[j]而不是j, 将所有的停靠站编号标记为1st[s[j]] = 1# 建图的优化方式, 建立一个中间节点ver = n + ifor j in range(start, end + 1):if st[j] == 0:g[j].append((ver, 0))d[ver] += 1else:g[ver].append((j, 1))d[j] += 1res = list()# 拓扑排序的节点个数为n + m, 每一趟车次多了一个源点所有拓扑排序总个数为n + mself.topsort(n + m, d, g, res)dis = [0] * (n + m + 10)for i in range(1, n + 1): dis[i] = 1# 从前往后递推求解最长路径for i in range(len(res)):ver = res[i]for next in g[ver]:dis[next[0]] = max(dis[next[0]], dis[ver] + next[1])ans = 0for i in range(1, n + 1):# 求解等级的最大值ans = max(ans, dis[i])return ansif __name__ == "__main__":print(Solution().process())

这篇关于456 车站分级(拓扑排序求解差分约束问题--平方级别的建图优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/235992

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py