基于SVM+Webdriver的智能NBA常规赛与季后赛结果预测系统——机器学习算法应用(含python、ipynb工程源码)+所有数据集(一)

本文主要是介绍基于SVM+Webdriver的智能NBA常规赛与季后赛结果预测系统——机器学习算法应用(含python、ipynb工程源码)+所有数据集(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
    • Python环境
    • Jupyter Notebook环境
    • PyCharm环境
    • MATLAB环境
  • 模块实现
    • 1. 数据预处理
      • 1)常规赛数据处理
      • 2)季后赛数据处理
  • 相关其它博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

本项目使用了从NBA官方网站获得的数据,并运用了支持向量机(SVM)模型来进行NBA常规赛和季后赛结果的预测。此外,项目还引入了相关系数法、随机森林分类法和Lasso方法,以评估不同特征的重要性。最后,使用Python库中的webdriver功能实现了自动发帖,并提供了科学解释来解释比赛预测结果。

首先,项目采集了NBA官方网站上的各种数据,这些数据包括球队与对手的历史表现、球员数据、赛季统计等。这些数据用于构建常规赛或季后赛结果的预测模型。

其次,支持向量机(SVM)模型被用来分析这些数据以进行常规赛或季后赛结果的预测。SVM是一种强大的机器学习算法,可以通过分析数据来确定不同特征对比赛结果的影响。

项目还使用了相关系数法、随机森林分类法和Lasso方法,以评估每个特征对常规赛或季后赛结果的重要性。这有助于识别哪些因素对比赛胜负有更大的影响。

最后,项目利用Python中的webdriver库自动发帖,在开源中国论坛中发布关于比赛预测的帖子。这些帖子不仅提供了预测结果,还附带了科学解释,以便其他球迷能够理解模型如何得出这些预测。这对于NBA球迷和数据科学爱好者来说可能是一个非常有趣的项目,能够帮助他们更好地理解比赛和预测比赛结果。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

模型处理流程如图所示。

在这里插入图片描述

自动发帖流程如图所示。

在这里插入图片描述

运行环境

本部分包括Python环境、Jupyter Notebook环境、PyCharm环境和Matlab环境。

Python环境

需要Python 3.6及以上配置,在Windows环境下推荐下载Anaconda完成Python所需环境的配置,下载地址为https://www.anaconda.com/,也可下载虚拟机在Linux环境下运行代码。

鼠标右击“我的电脑”,单击“属性”,选择高级系统设置。单击“环境变量”,找到系统变量中的Path,单击“编辑”然后新建,将Python解释器所在路径粘贴并确定。

Jupyter Notebook环境

打开Anaconda Prompt,转到HOME界面,单击JupyterNotebook的下载按钮,选择6.0.1版本或者更高的版本下载即可。

PyCharm环境

安装PyCharm并激活,PyCharm下载地址为http://www.jetbrains.com/pycharm/download/#section=windows,进入网站后单击Comminity版本下的DOWNLOAD下载安装包,下载完成后安装。

MATLAB环境

MATLAB版本为9.5.0.944444 (R2018b) ,MATLAB许可证编号为968398。操作系统为Microsoft Windows10企业版,2016长期服务版为Version10.0 (Build14393) 。

模块实现

本项目包括4个模块:数据预处理、特征提取、模型训练及评估、模型训练准确率,下面分别介绍各模块的功能及相关代码。

1. 数据预处理

数据处理分为常规赛和季后赛。

1)常规赛数据处理

数据集地址为https://www.basketball-reference.com/,下载后导入。使用Pandas的read_csv函数读取数据表,相关代码如下:

Mstat = pd.read_csv('nbadata/17-18Miscellaneous_Stat.csv')
#球队赛季总和统计数据
Ostat = pd.read_csv('nbadata/17-18Opponent_Per_Game_Stat.csv')
#对手赛季平均每场比赛统计数据
Tstat = pd.read_csv('nbadata/17-18Team_Per_Game_Stat.csv')
#球队赛季平均每场比赛统计数据
result_data = pd.read_csv('nbadata/2017-2018_result.csv')
#18~19赛季比赛日历和结果
Mstat# 球队综合数据图
Ostat.head()#球队对手数据图
Tstat.head()#球队场均数据图

部分数据如图1-图3所示。
在这里插入图片描述

图1 球队综合数据

在这里插入图片描述

图2 球队对手数据

在这里插入图片描述

图3 球队场均数据

进行数据初始化如下:

#删除无用列
new_Mstat = Mstat.drop(['Rk', 'Arena'], axis=1)
new_Ostat = Ostat.drop(['Rk', 'G', 'MP'], axis=1)
new_Tstat = Tstat.drop(['Rk', 'G', 'MP'], axis=1)
#根据队名横向拼接前两个表
team_stats1 = pd.merge(new_Mstat, new_Ostat, how='left', on='Team')
#根据队名横向拼接上三个表
team_stats1 = pd.merge(team_stats1, new_Tstat, how='left', on='Team')
team_stats=team_stats1.set_index('Team', inplace=False, drop=True)
team_stats1.head()#拼接表显示
result_data.head()#常规赛结果

拼接结果如图所示。

在这里插入图片描述

2017-2018赛季比赛结果前5个数据如图所示。
在这里插入图片描述

2)季后赛数据处理

季后赛预测需要提取的特征有常规赛球队得分、核心球员数量、核心球员得分、教练常规赛执教总场数、常规赛执教总胜率、季后赛执教总场数和季后赛执教总胜率,共7个特征。需要准备的数据有:常规赛队伍场均数据和对手场均数据,位于data/team_and_op文件夹下;教练数据,位于data/coach文件夹下;球员各项数据,位于data/player_score文件夹下;季后赛数据,位于data/playoff文件夹下。所有数据均为2010-2011赛季至2018-2019赛季数据。

相关代码如下:

tfname = glob.glob('data/team_and_op/*t.csv')
ofname = glob.glob('data/team_and_op/*o.csv')
for tname, oname, playoff in zip(tfname, ofname, playfname):
#读取队伍数据
df = pd.read_csv(tname)
#读取队伍对手数据
df_ = pd.read_csv(oname)

获得的原数据中,队名列中随机带有“*”,将其删除;教练数据及球员数据的队名是缩写,将其替换为全名;在采取数据的9个赛季中,有些队伍更改了名称,需统一为当前队名。使用pandas DataFrame对象的replace方法完成。

相关代码如下:

df.replace(oldname, newname)

相关其它博客

基于SVM+Webdriver的智能NBA常规赛与季后赛结果预测系统——机器学习算法应用(含python、ipynb工程源码)+所有数据集(二)

基于SVM+Webdriver的智能NBA常规赛与季后赛结果预测系统——机器学习算法应用(含python、ipynb工程源码)+所有数据集(三)

基于SVM+Webdriver的智能NBA常规赛与季后赛结果预测系统——机器学习算法应用(含python、ipynb工程源码)+所有数据集(四)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

这篇关于基于SVM+Webdriver的智能NBA常规赛与季后赛结果预测系统——机器学习算法应用(含python、ipynb工程源码)+所有数据集(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/233714

相关文章

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优