第64步 深度学习图像识别:多分类建模误判病例分析(Pytorch)

本文主要是介绍第64步 深度学习图像识别:多分类建模误判病例分析(Pytorch),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于WIN10的64位系统演示

一、写在前面

上期我们基于TensorFlow环境介绍了多分类建模的误判病例分析。

本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,基于Pytorch环境,构建SqueezeNet多分类模型,分析误判病例,因为它建模速度快。

同样,基于GPT-4辅助编程。

二、误判病例分析实战

使用胸片的数据集:肺结核病人和健康人的胸片的识别。其中,健康人900张,肺结核病人700张,COVID-19病人549张、细菌性(病毒性)肺炎组900张,分别存入单独的文件夹中。

直接分享代码:

######################################导入包###################################
import copy
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torch.utils.data import DataLoader
from torch import optim, nn
from torch.optim import lr_scheduler
import os
import matplotlib.pyplot as plt
import warnings
import numpy as npwarnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# 设置GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")################################导入数据集#####################################
from torchvision import datasets, transforms
from torch.nn.functional import softmax
from PIL import Image
import pandas as pd
import torch.nn as nn
import timm
from torch.optim import lr_scheduler# 自定义的数据集类
class ImageFolderWithPaths(datasets.ImageFolder):def __getitem__(self, index):original_tuple = super(ImageFolderWithPaths, self).__getitem__(index)path = self.imgs[index][0]tuple_with_path = (original_tuple + (path,))return tuple_with_path# 数据集路径
data_dir = "./MTB-1"# 图像的大小
img_height = 256
img_width = 256# 数据预处理
data_transforms = {'train': transforms.Compose([transforms.RandomResizedCrop(img_height),transforms.RandomHorizontalFlip(),transforms.RandomVerticalFlip(),transforms.RandomRotation(0.2),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),'val': transforms.Compose([transforms.Resize((img_height, img_width)),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}# 加载数据集
full_dataset = ImageFolderWithPaths(data_dir, transform=data_transforms['train'])# 获取数据集的大小
full_size = len(full_dataset)
train_size = int(0.8 * full_size)  # 假设训练集占70%
val_size = full_size - train_size  # 验证集的大小# 随机分割数据集
torch.manual_seed(0)  # 设置随机种子以确保结果可重复
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])# 应用数据增强到训练集和验证集
train_dataset.dataset.transform = data_transforms['train']
val_dataset.dataset.transform = data_transforms['val']# 创建数据加载器
batch_size = 8
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=0)dataloaders = {'train': train_dataloader, 'val': val_dataloader}
dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
class_names = full_dataset.classes# 获取数据集的类别
class_names = full_dataset.classes# 保存预测结果的列表
results = []###############################定义SqueezeNet模型################################
# 定义SqueezeNet模型
model = models.squeezenet1_1(pretrained=True)  # 这里以SqueezeNet 1.1版本为例
num_ftrs = model.classifier[1].in_channels# 根据分类任务修改最后一层
# 这里我们改变模型的输出层为4,因为我们做的是四分类
model.classifier[1] = nn.Conv2d(num_ftrs, 4, kernel_size=(1,1))# 修改模型最后的输出层为我们需要的类别数
model.num_classes = 4model = model.to(device)# 打印模型摘要
print(model)#############################编译模型#########################################
# 定义损失函数
criterion = nn.CrossEntropyLoss()# 定义优化器
optimizer = torch.optim.Adam(model.parameters())# 定义学习率调度器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)# 开始训练模型
num_epochs = 20# 初始化记录器
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 每个epoch都有一个训练和验证阶段for phase in ['train', 'val']:if phase == 'train':model.train()  # 设置模型为训练模式else:model.eval()   # 设置模型为评估模式running_loss = 0.0running_corrects = 0# 遍历数据for inputs, labels, paths in dataloaders[phase]:inputs = inputs.to(device)labels = labels.to(device)# 零参数梯度optimizer.zero_grad()# 前向with torch.set_grad_enabled(phase == 'train'):outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)# 只在训练模式下进行反向和优化if phase == 'train':loss.backward()optimizer.step()# 统计running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / dataset_sizes[phase]epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()# 记录每个epoch的loss和accuracyif phase == 'train':train_loss_history.append(epoch_loss)train_acc_history.append(epoch_acc)else:val_loss_history.append(epoch_loss)val_acc_history.append(epoch_acc)print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))print()# 保存模型
torch.save(model.state_dict(), 'SqueezeNet_model-m-s.pth')# 加载最佳模型权重
#model.load_state_dict(best_model_wts)
#torch.save(model, 'shufflenet_best_model.pth')
#print("The trained model has been saved.")
###########################误判病例分析#################################
import os
import pandas as pd
from collections import defaultdict# 判定组别的字典
group_dict = {("COVID-19", "Normal"): "B",("COVID-19", "Pneumonia"): "C",("COVID-19", "Tuberculosis"): "D",("Normal", "COVID-19"): "E",("Normal", "Pneumonia"): "F",("Normal", "Tuberculosis"): "G",("Pneumonia", "COVID-19"): "H",("Pneumonia", "Normal"): "I",("Pneumonia", "Tuberculosis"): "J",("Tuberculosis", "COVID-19"): "K",("Tuberculosis", "Normal"): "L",("Tuberculosis", "Pneumonia"): "M",
}# 创建一个字典来保存所有的图片信息
image_predictions = {}# 循环遍历所有数据集(训练集和验证集)
for phase in ['train', 'val']:# 设置模型的状态model.eval()# 遍历数据for inputs, labels, paths in dataloaders[phase]:inputs = inputs.to(device)labels = labels.to(device)# 计算模型的输出with torch.no_grad():outputs = model(inputs)_, preds = torch.max(outputs, 1)# 循环遍历每一个批次的结果for path, pred in zip(paths, preds):# 提取图片的类别actual_class = os.path.split(os.path.dirname(path))[-1] # 提取图片的名称image_name = os.path.basename(path)# 获取预测的类别predicted_class = class_names[pred]# 判断预测的分组类型if actual_class == predicted_class:group_type = 'A'elif (actual_class, predicted_class) in group_dict:group_type = group_dict[(actual_class, predicted_class)]else:group_type = 'Other'  # 如果没有匹配的条件,可以归类为其他# 保存到字典中image_predictions[image_name] = [phase, actual_class, predicted_class, group_type]# 将字典转换为DataFrame
df = pd.DataFrame.from_dict(image_predictions, orient='index', columns=['Dataset Type', 'Actual Class', 'Predicted Class', 'Group Type'])# 保存到CSV文件中
df.to_csv('result-m-s.csv')

四、改写过程

先说策略:首先,先把二分类的误判病例分析代码改成四分类的;其次,用咒语让GPT-4帮我们续写代码已达到误判病例分析。

提供咒语如下:

①改写{代码1},改变成4分类的建模。代码1为:{XXX};

在{代码1}的基础上改写代码,达到下面要求:

(1)首先,提取出所有图片的“原始图片的名称”、“属于训练集还是验证集”、“预测为分组类型”;文件的路劲格式为:例如,“MTB-1\Normal\XXX.png”属于Normal,“MTB-1\COVID-19\XXX.jpg”属于COVID-19,“MTB-1\Pneumonia\XXX.jpeg”属于Pneumonia,“MTB-1\Tuberculosis\XXX.png”属于Tuberculosis;

(2)其次,根据样本预测结果,把样本分为以下若干组:(a)预测正确的图片,全部判定为A组;(b)本来就是COVID-19的图片,预测为Normal,判定为B组;(c)本来就是COVID-19的图片,预测为Pneumonia,判定为C组;(d)本来就是COVID-19的图片,预测为Tuberculosis,判定为D组;(e)本来就是Normal的图片,预测为COVID-19,判定为E组;(f)本来就是Normal的图片,预测为Pneumonia,判定为F组;(g)本来就是Normal的图片,预测为Tuberculosis,判定为G组;(h)本来就是Pneumonia的图片,预测为COVID-19,判定为H组;(i)本来就是Pneumonia的图片,预测为Normal,判定为I组;(j)本来就是Pneumonia的图片,预测为Tuberculosis,判定为J组;(k)本来就是Tuberculosis的图片,预测为COVID-19,判定为H组;(l)本来就是Tuberculosis的图片,预测为Normal,判定为I组;(m)本来就是Tuberculosis的图片,预测为Pneumonia,判定为J组;

(3)居于以上计算的结果,生成一个名为result-m.csv表格文件。列名分别为:“原始图片的名称”、“属于训练集还是验证集”、“预测为分组类型”、“判定的组别”。其中,“原始图片的名称”为所有图片的图片名称;“属于训练集还是验证集”为这个图片属于训练集还是验证集;“预测为分组类型”为模型预测该样本是哪一个分组;“判定的组别”为根据步骤(2)判定的组别,从A到J一共十组选择一个。

(4)需要把所有的图片都进行上面操作,注意是所有图片,而不只是一个批次的图片。

代码1为:{XXX}

③还需要根据报错做一些调整即可,自行调整。

最后,看看结果:

模型只运行了2次,所以效果很差哈,全部是预测成了COVID-19。

四、数据

链接:https://pan.baidu.com/s/1rqu15KAUxjNBaWYfEmPwgQ?pwd=xfyn

提取码:xfyn

五、结语

深度学习图像分类的教程到此结束,洋洋洒洒29篇,涉及到的算法和技巧也够发一篇SCI了。当然,图像识别还有图像分割和目标识别两块内容,就放到最后再说了。下一趴,我们来介绍时间序列建模!!!

这篇关于第64步 深度学习图像识别:多分类建模误判病例分析(Pytorch)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/231884

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维