虚幻4渲染编程(物理模拟篇)【第一卷:Introduce my Physic plugin】

2023-10-17 21:59

本文主要是介绍虚幻4渲染编程(物理模拟篇)【第一卷:Introduce my Physic plugin】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MY BLOG DIRECTORY:

YivanLee:专题概述及目录

INTRODUCTION:

虽然虚幻4给我们提供了物理的解决方案,但是这些方案其实还是不够完善,很多上层功能性的物理特性还是需要基于Unreal的物理接口再次开发的。这卷我将基于Unreal的物理引擎接口开发更加上层的物理特性。

以下的效果是我开发的PhyGX插件目前的部分功能。比如我们有时候需要一个物理蜘蛛网:

再比如我们有时候需要一片物理草地

或者需要什么更上层的功能,这时候就需要对引擎的物理功能根据项目需求进行拓展。为什么叫PhyGX呢,因为接下来我开发的物理插件就叫PhyGX(自己瞎取的名)。


MAIN CONTENT:

其实在我之前的文章里也有提到过,首先我们构造出一些动力学粒子和约束,然后结算它们,把最后的解算结果用来构建动态网格,然后把网格数据塞的渲染管线里就好了。这个可以看我之前的文章:

YivanLee:虚幻4渲染编程(图元汇编篇)【第五卷:游戏中的动力学模拟】

YivanLee:虚幻4渲染编程(环境模拟篇)【第五卷:可交互物理植被模拟 - 上】

刚体运动模拟就是使用韦尔莱算法,如果想模拟软体就是需要在约束上下功夫了。目前我实现的约束有四种:

DistanceConstraint,AngularConstraint,DistanceAngularConstraint,PinConstraint

VeletParticle.h

        #pragma  once#include "EngineMinimal.h"
#include "UObject/ObjectMacros.h"
#include "Engine/EngineTypes.h"/
//PinConstraint
struct FPinConstraint
{FPinConstraint(){bFree = true;bLockX = false;bLockY = false;bLockZ = false;}FPinConstraint(bool bfreeval, bool blockxval, bool blockyval , bool blockzval):bFree(bfreeval),bLockX(blockxval),bLockY(blockyval),bLockZ(blockzval){}bool bFree;bool bLockX;bool bLockY;bool bLockZ;
};/
//Verlet Paticle
struct FVerletParticle
{
public:FVerletParticle() {bUseLocalForce = false;ParticleFraction = 1.0f;}void InitVerletParticle(FVector CurPosValue, FVector OldPosValue, bool bFreeValue = true, bool bLockXValue = false, bool bLockYValue = false, bool bLockZValue = false,float Fraction = 1.0f){CurPos = CurPosValue;OldPos = OldPosValue;PinCons.bFree = bFreeValue;PinCons.bLockX = bLockXValue;PinCons.bLockY = bLockYValue;PinCons.bLockZ = bLockZValue;ParticleFraction = Fraction;}// If Using this function vertion particle will use it's own force directionvoid InitVerletParticle(FVector CurPosValue,FVector OldPosValue,FVector Force,bool bFreeValue = true,bool bLockXValue = false,bool bLockYValue = false,bool bLockZValue = false,float Fraction = 1.0f){CurPos = CurPosValue;OldPos = OldPosValue;LocalForceDir = Force;PinCons.bFree = bFreeValue;PinCons.bLockX = bLockXValue;PinCons.bLockY = bLockYValue;PinCons.bLockZ = bLockZValue;ParticleFraction = Fraction;bUseLocalForce = true;}FVector CurPos;FVector OldPos;FVector LocalForceDir;FPinConstraint PinCons;float ParticleFraction;void SolvePinConstraint();bool GetbUseLocalForce() { return bUseLocalForce; }private:bool bUseLocalForce;};/
//DistanceConstraint
struct FDistanceConstraint
{FDistanceConstraint(){}FDistanceConstraint(FVerletParticle* A, FVerletParticle* B, float DesiDistanceValue):ParticleA(A), ParticleB(B), DistanceLength(DesiDistanceValue){}//The Range of the SoftFactor is [0, 1]void InitDistanceConstraint(FVerletParticle& A, FVerletParticle& B, float distance, float SoftFactor = 1.0f){ParticleA = &A;ParticleB = &B;DistanceLength = distance;SoftStrenth = SoftFactor;}void SolveDistanceConstraint();FVerletParticle* ParticleA;FVerletParticle* ParticleB;float DistanceLength;//The Range of the SoftStrenth is [0, 1]float SoftStrenth;
};/
//AngularConstraint
struct FAngularConstraint
{FAngularConstraint(){}FAngularConstraint(FVerletParticle* A, FVerletParticle* B, FVerletParticle* C, float AngularSizeValue):ParticleA(A), ParticleB(B), ParticleC(C), AngularSize(AngularSizeValue){}//If we don't use distance angular constraint,use this function to initvoid InitAngularConstraint(FVerletParticle& A, FVerletParticle& B, FVerletParticle& C, float AngularSizeValue){ParticleA = &A;ParticleB = &B;ParticleC = &C;AngularSize = AngularSizeValue;bUseDistanceAngularConstraint = false;}//If we use distance angular constraint, we shoule use this vertion function to initvoid InitAngularConstraint(FVerletParticle& A, FVerletParticle& B, FVerletParticle& C,float AngularSizeValue,float EdgeASize, float EdgeBSize, float angularsoft){ParticleA = &A;ParticleB = &B;ParticleC = &C;AngularSize = AngularSizeValue;AngularSoftStrenth = angularsoft;bUseDistanceAngularConstraint = true;DistanceAngularEdgeALength = EdgeASize;DistanceAngularEdgeBLength = EdgeBSize;}//This is first type angular constraint,it is not a good solve wayvoid SolveAngularConstraint();//The second Solve Angular constraint way, very simple but usefulvoid SolveDistanceAngularConstraint();//These data is for distance angular constraint//The range of the AngularSoftStrenth is [0, 1]float AngularSoftStrenth;float DistanceAngularEdgeALength;float DistanceAngularEdgeBLength;bool bUseDistanceAngularConstraint;//Three particle pointer of this angular constraintFVerletParticle* ParticleA;FVerletParticle* ParticleB;FVerletParticle* ParticleC;//The angle to limitedfloat AngularSize;};

VeletParticle.cpp

        #include "VerletParticle.h"void FVerletParticle::SolvePinConstraint()
{if (PinCons.bLockX){CurPos.X = OldPos.X;}if (PinCons.bLockY){CurPos.Y = OldPos.Y;}if (PinCons.bLockZ){CurPos.Z = OldPos.Z;}
}void FDistanceConstraint::SolveDistanceConstraint()
{if ((ParticleA != nullptr && ParticleB != nullptr)&&(ParticleA->PinCons.bFree || ParticleB->PinCons.bFree)){// Find current vector between particlesFVector Delta = ParticleB->CurPos - ParticleA->CurPos;// float CurrentDistance = Delta.Size();float ErrorFactor = (CurrentDistance - DistanceLength) / CurrentDistance * SoftStrenth;// Only move free particles to satisfy constraintsif (ParticleA->PinCons.bFree && ParticleB->PinCons.bFree){ParticleA->CurPos += ErrorFactor * 0.5f * Delta;ParticleB->CurPos -= ErrorFactor * 0.5f * Delta;}else if (ParticleA->PinCons.bFree){ParticleA->CurPos += ErrorFactor * Delta;}else if (ParticleB->PinCons.bFree){ParticleB->CurPos -= ErrorFactor * Delta;}}
}void FAngularConstraint::SolveAngularConstraint()
{if ((ParticleA != nullptr && ParticleB != nullptr && ParticleC !=nullptr) && (ParticleA->PinCons.bFree || ParticleC->PinCons.bFree)){FVector a = ParticleA->CurPos - ParticleB->CurPos;FVector b = ParticleC->CurPos - ParticleB->CurPos;float theta = acos(dot(a, b) / (length(a) * length(b))) * 180.0f / 3.1415926f;if (theta > AngularSize) return;float dif = theta - AngularSize;float ErrorFactor = (theta - AngularSize) / (theta + 0.0001);if (dif < -360.0f){dif += 360;}else if (dif > 360.0f){dif -= 360.0f;}FVector Axi = cross(a, b).GetSafeNormal();float ConstraintStrenth = 0.007f;if (ParticleA->PinCons.bFree && ParticleC->PinCons.bFree){ParticleA->CurPos += (ParticleA->CurPos.RotateAngleAxis(dif * ErrorFactor * 0.5f, Axi)) * ConstraintStrenth * 0.5f;ParticleC->CurPos -= (ParticleC->CurPos.RotateAngleAxis(-dif * ErrorFactor * 0.5f, Axi)) * ConstraintStrenth * 0.5f;}else if (ParticleA->PinCons.bFree){ParticleA->CurPos += (ParticleA->CurPos.RotateAngleAxis(dif * ErrorFactor, Axi)) * ConstraintStrenth;}else if (ParticleC->PinCons.bFree){ParticleC->CurPos -= (ParticleC->CurPos.RotateAngleAxis(-dif * ErrorFactor, Axi)) * ConstraintStrenth;}}
}void FAngularConstraint::SolveDistanceAngularConstraint()
{if ((ParticleA != nullptr && ParticleB != nullptr && ParticleC != nullptr)&& (ParticleA->PinCons.bFree || ParticleC->PinCons.bFree)){float la = DistanceAngularEdgeALength;float lb = DistanceAngularEdgeBLength;float lc = sqrt(la*la + lb * lb - 2 * la*lb*cos(AngularSize));// Find current vector between particlesFVector Delta = ParticleA->CurPos - ParticleC->CurPos;// float CurrentDistance = Delta.Size();float ErrorFactor = (CurrentDistance - lc) / CurrentDistance * AngularSoftStrenth;// Only move free particles to satisfy constraintsif (ParticleA->PinCons.bFree && ParticleC->PinCons.bFree){ParticleA->CurPos -= ErrorFactor * 0.5f * Delta;ParticleC->CurPos += ErrorFactor * 0.5f * Delta;}else if (ParticleA->PinCons.bFree){ParticleA->CurPos -= ErrorFactor * Delta;}else if (ParticleC->PinCons.bFree){ParticleC->CurPos += ErrorFactor * Delta;}}
}

这便是构造物体最基础的Particle和四种Constraint的代码了,目前还非常简单,没有加入太多的物理量。

有了最基础的Particle,下一步就是构造动力学网格ParticleNet

v2-96f3a1f7669f4d84b33f2bd2f632b860_b.jpg

v2-56162d7d13ce0b2eba732ffa518e7290_b.jpg

ParticleNet由各种Constraint,一堆约束和一堆渲染所用的数据组成,在ParticleNet里需要完成粒子网格的构建和动态模型的构建,然后在把这些数据塞给SceneProxy即可

v2-276a3fc3e1270943bcd697669f7b47d5_b.jpg

v2-04ada33fd297750a8b18dec8e09643fc_b.jpg

最后再在MeshComponent中把SceneProxy和ParticleNet组合到一起,在Tick函数中不停让ParticleNet更新数据

v2-388651e2cb29dd918dda4aea60197bf7_b.jpg

ParticleNet需要对Point的位置进行动力学解算,下面这段解算公式是通用的。代码中的Force可以是任何力,默认情况下物体受到一个重力。对于重力,这个值是一直不变的,但是可以把它的值进行动态变换。

        void FPhyGXParticleNet::VerletInstigation()
{for (int32 ParticleIndex = 0; ParticleIndex < Particles.Num(); ParticleIndex++){FVerletParticle& Particle = Particles[ParticleIndex];if (Particle.PinCons.bFree){FVector Force = FVector(0, 0, 0);if (Particle.GetbUseLocalForce() == true){//Local forceForce = Particle.LocalForceDir;}//Use global force to caculateelseForce = ForceDir;// Find velconst FVector Vel = Particle.CurPos - Particle.OldPos;// Update positionconst FVector NewPosition = Particle.CurPos + (Vel + (SubstepTimeSqr * Force)) * Particle.ParticleFraction;Particle.OldPos = Particle.CurPos;Particle.CurPos = NewPosition;}}
}

在SendRenderDynamicData_Concurrent()函数中把ParticleNet的渲染数据塞给SceneProxy

v2-3d1002277221eec9b4ca4873c3423a83_b.jpg

这样就可以在UE中进行我们自己的物理引擎插件的开发了。完整代码我会在后面的章节中放出。


SUMMARY AND OUTLOOK:

如果不进行VB和IB的Buffer拷贝修改操作的话,其实仅仅是模拟物理那部分计算量还是比较小的。

Enjoy it。


NEXT:

YivanLee:虚幻4渲染编程(物理模拟篇)【第二卷:Soft Body Simulation】

这篇关于虚幻4渲染编程(物理模拟篇)【第一卷:Introduce my Physic plugin】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/228204

相关文章

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Python异步编程中asyncio.gather的并发控制详解

《Python异步编程中asyncio.gather的并发控制详解》在Python异步编程生态中,asyncio.gather是并发任务调度的核心工具,本文将通过实际场景和代码示例,展示如何结合信号量... 目录一、asyncio.gather的原始行为解析二、信号量控制法:给并发装上"节流阀"三、进阶控制

Maven pom.xml文件中build,plugin标签的使用小结

《Mavenpom.xml文件中build,plugin标签的使用小结》本文主要介绍了Mavenpom.xml文件中build,plugin标签的使用小结,文中通过示例代码介绍的非常详细,对大家的学... 目录<build> 标签Plugins插件<build> 标签<build> 标签是 pom.XML

CSS模拟 html 的 title 属性(鼠标悬浮显示提示文字效果)

《CSS模拟html的title属性(鼠标悬浮显示提示文字效果)》:本文主要介绍了如何使用CSS模拟HTML的title属性,通过鼠标悬浮显示提示文字效果,通过设置`.tipBox`和`.tipBox.tipContent`的样式,实现了提示内容的隐藏和显示,详细内容请阅读本文,希望能对你有所帮助... 效

C#多线程编程中导致死锁的常见陷阱和避免方法

《C#多线程编程中导致死锁的常见陷阱和避免方法》在C#多线程编程中,死锁(Deadlock)是一种常见的、令人头疼的错误,死锁通常发生在多个线程试图获取多个资源的锁时,导致相互等待对方释放资源,最终形... 目录引言1. 什么是死锁?死锁的典型条件:2. 导致死锁的常见原因2.1 锁的顺序问题错误示例:不同

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

详解如何在React中执行条件渲染

《详解如何在React中执行条件渲染》在现代Web开发中,React作为一种流行的JavaScript库,为开发者提供了一种高效构建用户界面的方式,条件渲染是React中的一个关键概念,本文将深入探讨... 目录引言什么是条件渲染?基础示例使用逻辑与运算符(&&)使用条件语句列表中的条件渲染总结引言在现代

虚拟机与物理机的文件共享方式

《虚拟机与物理机的文件共享方式》文章介绍了如何在KaliLinux虚拟机中实现物理机文件夹的直接挂载,以便在虚拟机中方便地读取和使用物理机上的文件,通过设置和配置,可以实现临时挂载和永久挂载,并提供... 目录虚拟机与物理机的文件共享1 虚拟机设置2 验证Kali下分享文件夹功能是否启用3 创建挂载目录4

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]