【机器学习PAI实践十二】机器学习实现男女声音识别分类(含语音特征提取数据和代码)...

本文主要是介绍【机器学习PAI实践十二】机器学习实现男女声音识别分类(含语音特征提取数据和代码)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

随着人工智能的算法发展,对于非结构化数据的处理能力越来越受到重视,这里面的关键一环就是语音数据的处理。目前,许多关于语音识别的应用案例已经影响着我们的生活,例如一些智能音箱中利用语音发送指令,一些搜索工具利用语音输出文本代替键盘录入。

本文我们将针对语音识别中最简单的案例“男女声音”识别,结合本地的R工具以及机器学习PAI,为大家进行介绍。通过本案例,可以将任何用户的语音数据标记出性别,并且保持高准确率。我们把整个实验流程切分为两部分,第一部分是声音信号的特征提取,通过R的信号处理工具实现;第二部分通过机器学习PAI实现男女声音分类模型的训练,本实验需要事先积累男女声音的录音数据,本文已经提供处理好的3000条语音数据,文章末尾提供下载。

声音信号特征提取

语音数据与图像数据以及文本数据不同,如果经常使用K歌软件或者是语音合成软件,不难理解语音数据通常成信号状分布。

为了有效的通过算法处理这种波形数据,需要首先通过信号处理工具对语音信号进行处理。本文我们选用的是R语言的warbleR包,warbleR包含大量的频谱处理工具,可以通过其中的频谱处理函数提取出关于声音的以下特征信息,因为男生和女生在声音频率、振幅的方面一定有很大区别,所以要通过提取以下特征帮助我们进行分类:

接下来会讲解如何提取这些声音信号的特征:

1.安装R

首先安装R语言包,warbleR需要R的版本是3.2以上,这里强烈建议大家使用3.3.3版本(博主在使用3.4的时候遇到错误)。具体R的安装方式网上有很多介绍,这里就不详细介绍了。

2.安装warbleR

安装完R之后,进入R命令行,需要通过以下命令安装warbleR:

install.packages("warbleR")  library(warbleR)  

这里需要注意的是镜像最好使用美国的默认镜像服务,需要翻*,不然很有可能会安装不成功,因为国内的镜像会缺少某些依赖包。

3.特征提取

首先把需要处理的录音数据(必须是wav格式)按照男声、女声分装在male和female两个文件夹中,然后执行笔者提供的R脚本代码(文末提供了下载链接)。需要将代码中以下两个文件路径改为自己建立的male以及female文件路径即可:

执行这个R脚本,就会将wav格式的声音文件转化为结构化数据,数据会存储为一个CSV文件。文件部分截图:

PAI训练男女声音分类模型

1.导入数据

将通过R处理后的数据导入PAI平台,也可以直接将文末提供的处理好的数据导入。具体方法可以看:https://help.aliyun.com/video_detail/54945.html

数据导入后,可以看到有20个特征以及1列label列,

2.建立分类模型

通过拖拉PAI平台的组件搭建实验,实验流程图:

  • voice_classify:为数据读入源
  • 拆分:将数据集拆分为训练集以及预测集
  • 线性支持向量机:通过SVM算法训练生成模型
  • 预测组件:通过模型对预测集预测
  • 混淆矩阵:用来评估

这是一个比较简单的二分类场景,具体也可以参看之前的一些文章:https://yq.aliyun.com/articles/54260

3.评估

最终“混淆矩阵”组件会显示如下图的分类评估:

通过混淆矩阵,可以看到男女声音的分类还是非常精准的。

总结

本文通过使用R脚本以及机器学习PAI实现了男女声音分类的案例,最终的准确率达到百分之九十八左右。在实际使用过程中,用户需要执行以下几步:
(1)首先积累需要分类的声音文件,数据越多越好,存储为wav格式。
(2)然后通过R脚本对打标好的声音文件进行特征提取。
(3)将处理后的数据上传PAI,建立分类模型即可。

PAI地址:https://data.aliyun.com/product/learn
企业服务咨询:https://survey.aliyun.com/survey/AMgL8_Pm5
数据下载(代码及数据来自warbleR社区开源提供):https://github.com/jimenbian/PAI_voice_classify
与作者讨论可以关注我的微信公众号“凡人机器学习”:

这篇关于【机器学习PAI实践十二】机器学习实现男女声音识别分类(含语音特征提取数据和代码)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/226931

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服