维基百科语料中的词语相似度探索

2023-10-17 15:40

本文主要是介绍维基百科语料中的词语相似度探索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前写过《中英文维基百科语料上的Word2Vec实验》,近期有不少同学在这篇文章下留言提问,加上最近一些工作也与Word2Vec相关,于是又做了一些功课,包括重新过了一遍Word2Vec的相关资料,试了一下gensim的相关更新接口,google了一下"wikipedia word2vec" or "维基百科 word2vec" 相关的英中文资料,发现多数还是走得这篇文章的老路,既通过gensim提供的维基百科预处理脚本"gensim.corpora.WikiCorpus"提取维基语料,每篇文章一行文本存放,然后基于gensim的Word2Vec模块训练词向量模型。这里再提供另一个方法来处理维基百科的语料,训练词向量模型,计算词语相似度(Word Similarity)。关于Word2Vec, 如果英文不错,推荐从这篇文章入手读相关的资料: Getting started with Word2Vec 。

这次我们仅以英文维基百科语料为例,首先依然是下载维基百科的最新XML打包压缩数据,在这个英文最新更新的数据列表下:https://dumps.wikimedia.org/enwiki/latest/ ,找到 "enwiki-latest-pages-articles.xml.bz2" 下载,这份英文维基百科全量压缩数据的打包时间大概是2017年4月4号,大约13G,我通过家里的电脑wget下载大概花了3个小时,电信100M宽带,速度还不错。

接下来就是处理这份压缩的XML英文维基百科语料了,这次我们使用WikiExtractor:

WikiExtractor.py is a Python script that extracts and cleans text from a Wikipedia database dump.
The tool is written in Python and requires Python 2.7 or Python 3.3+ but no additional library.

WikiExtractor是一个Python 脚本,专门用于提取和清洗Wikipedia的dump数据,支持Python 2.7 或者 Python 3.3+,无额外依赖,安装和使用都非常方便:

安装:
git clone https://github.com/attardi/wikiextractor.git
cd wikiextractor/
sudo python setup.py install

使用:
WikiExtractor.py -o enwiki enwiki-latest-pages-articles.xml.bz2

......
INFO: 53665431  Pampapaul
INFO: 53665433  Charles Frederick Zimpel
INFO: Finished 11-process extraction of 5375019 articles in 8363.5s (642.7 art/s)

这个过程总计花了2个多小时,提取了大概537万多篇文章。关于我的机器配置,可参考:《深度学习主机攒机小记》

提取后的文件按一定顺序切分存储在多个子目录下:

每个子目录下的又存放若干个以wiki_num命名的文件,每个大小在1M左右,这个大小可以通过参数 -b 控制:

-b n[KMG], --bytes n[KMG] maximum bytes per output file (default 1M)

我们看一下wiki_00里的具体内容:


Anarchism

Anarchism is a political philosophy that advocates self-governed societies based on voluntary institutions. These are often described as stateless societies, although several authors have defined them more specifically as institutions based on non-hierarchical free associations. Anarchism holds the state to be undesirable, unnecessary, and harmful.
...
Criticisms of anarchism include moral criticisms and pragmatic criticisms. Anarchism is often evaluated as unfeasible or utopian by its critics.



Autism

Autism is a neurodevelopmental disorder characterized by impaired social interaction, verbal and non-verbal communication, and restricted and repetitive behavior. Parents usually notice signs in the first two years of their child's life. These signs often develop gradually, though some children with autism reach their developmental milestones at a normal pace and then regress. The diagnostic criteria require that symptoms become apparent in early childhood, typically before age three.
...

...

每个wiki_num文件里又存放若干个doc,每个doc都有相关的tag标记,包括id, url, title等,很好区分。

这里我们按照Gensim作者提供的word2vec tutorial里"memory-friendly iterator"方式来处理英文维基百科的数据。代码如下,也同步放到了github里:train_word2vec_with_gensim.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Author: Pan Yang (panyangnlp@gmail.com)
# Copyright 2017 @ Yu Zhenimport gensim
import logging
import multiprocessing
import os
import re
import sysfrom pattern.en import tokenize
from time import timelogging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',level=logging.INFO)def cleanhtml(raw_html):cleanr = re.compile('<.*?>')cleantext = re.sub(cleanr, ' ', raw_html)return cleantextclass MySentences(object):def __init__(self, dirname):self.dirname = dirnamedef __iter__(self):for root, dirs, files in os.walk(self.dirname):for filename in files:file_path = root + '/' + filenamefor line in open(file_path):sline = line.strip()if sline == "":continuerline = cleanhtml(sline)tokenized_line = ' '.join(tokenize(rline))is_alpha_word_line = [word for word intokenized_line.lower().split()if word.isalpha()]yield is_alpha_word_lineif __name__ == '__main__':if len(sys.argv) != 2:print "Please use python train_with_gensim.py data_path"exit()data_path = sys.argv[1]begin = time()sentences = MySentences(data_path)model = gensim.models.Word2Vec(sentences,size=200,window=10,min_count=10,workers=multiprocessing.cpu_count())model.save("data/model/word2vec_gensim")model.wv.save_word2vec_format("data/model/word2vec_org","data/model/vocabulary",binary=False)end = time()print "Total procesing time: %d seconds" % (end - begin)

注意其中的word tokenize使用了pattern里的英文tokenize模块,当然,也可以使用nltk里的word_tokenize模块,做一点修改即可,不过nltk对于句尾的一些词的work tokenize处理的不太好。另外我们设定词向量维度为200, 窗口长度为10, 最小出现次数为10,通过 is_alpha() 函数过滤掉标点和非英文词。现在可以用这个脚本来训练英文维基百科的Word2Vec模型了:
python train_word2vec_with_gensim.py enwiki

2017-04-22 14:31:04,703 : INFO : collecting all words and their counts
2017-04-22 14:31:04,704 : INFO : PROGRESS: at sentence #0, processed 0 words, keeping 0 word types
2017-04-22 14:31:06,442 : INFO : PROGRESS: at sentence #10000, processed 480546 words, keeping 33925 word types
2017-04-22 14:31:08,104 : INFO : PROGRESS: at sentence #20000, processed 983240 words, keeping 51765 word types
2017-04-22 14:31:09,685 : INFO : PROGRESS: at sentence #30000, processed 1455218 words, keeping 64982 word types
2017-04-22 14:31:11,349 : INFO : PROGRESS: at sentence #40000, processed 1957479 words, keeping 76112 word types
......
2017-04-23 02:50:59,844 : INFO : worker thread finished; awaiting finish of 2 more threads                                                                      2017-04-23 02:50:59,844 : INFO : worker thread finished; awaiting finish of 1 more threads                                                                      2017-04-23 02:50:59,854 : INFO : worker thread finished; awaiting finish of 0 more threads                                                                      2017-04-23 02:50:59,854 : INFO : training on 8903084745 raw words (6742578791 effective words) took 37805.2s, 178351 effective words/s                          
2017-04-23 02:50:59,855 : INFO : saving Word2Vec object under data/model/word2vec_gensim, separately None                                                       
2017-04-23 02:50:59,855 : INFO : not storing attribute syn0norm                 
2017-04-23 02:50:59,855 : INFO : storing np array 'syn0' to data/model/word2vec_gensim.wv.syn0.npy                                                              
2017-04-23 02:51:00,241 : INFO : storing np array 'syn1neg' to data/model/word2vec_gensim.syn1neg.npy                                                           
2017-04-23 02:51:00,574 : INFO : not storing attribute cum_table                
2017-04-23 02:51:13,886 : INFO : saved data/model/word2vec_gensim               
2017-04-23 02:51:13,886 : INFO : storing vocabulary in data/model/vocabulary    
2017-04-23 02:51:17,480 : INFO : storing 868777x200 projection weights into data/model/word2vec_org                                                             
Total procesing time: 44476 seconds

这个训练过程中大概花了12多小时,训练后的文件存放在data/model下:

我们来测试一下这个英文维基百科的Word2Vec模型:

textminer@textminer:/opt/wiki/data$ ipython
Python 2.7.12 (default, Nov 19 2016, 06:48:10) 
Type "copyright", "credits" or "license" for more information.IPython 2.4.1 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.In [1]: from gensim.models import Word2VecIn [2]: en_wiki_word2vec_model = Word2Vec.load('data/model/word2vec_gensim')

首先来测试几个单词的相似单词(Word Similariy):

word:

In [3]: en_wiki_word2vec_model.most_similar('word')
Out[3]: 
[('phrase', 0.8129693269729614),('meaning', 0.7311851978302002),('words', 0.7010501623153687),('adjective', 0.6805518865585327),('noun', 0.6461974382400513),('suffix', 0.6440576314926147),('verb', 0.6319557428359985),('loanword', 0.6262609958648682),('proverb', 0.6240501403808594),('pronunciation', 0.6105246543884277)]

similarity:

In [4]: en_wiki_word2vec_model.most_similar('similarity')
Out[4]: 
[('similarities', 0.8517599701881409),('resemblance', 0.786037266254425),('resemblances', 0.7496883869171143),('affinities', 0.6571112275123596),('differences', 0.6465682983398438),('dissimilarities', 0.6212711930274963),('correlation', 0.6071442365646362),('dissimilarity', 0.6062943935394287),('variation', 0.5970577001571655),('difference', 0.5928016901016235)]

nlp:

In [5]: en_wiki_word2vec_model.most_similar('nlp')
Out[5]: 
[('neurolinguistic', 0.6698148250579834),('psycholinguistic', 0.6388964056968689),('connectionism', 0.6027182936668396),('semantics', 0.5866401195526123),('connectionist', 0.5865628719329834),('bandler', 0.5837364196777344),('phonics', 0.5733655691146851),('psycholinguistics', 0.5613113641738892),('bootstrapping', 0.559638261795044),('psychometrics', 0.5555593967437744)]

learn:

In [6]: en_wiki_word2vec_model.most_similar('learn')
Out[6]: 
[('teach', 0.7533557415008545),('understand', 0.71148681640625),('discover', 0.6749690771102905),('learned', 0.6599283218383789),('realize', 0.6390970349311829),('find', 0.6308424472808838),('know', 0.6171890497207642),('tell', 0.6146825551986694),('inform', 0.6008728742599487),('instruct', 0.5998791456222534)]

man:

In [7]: en_wiki_word2vec_model.most_similar('man')
Out[7]: 
[('woman', 0.7243080735206604),('boy', 0.7029494047164917),('girl', 0.6441491842269897),('stranger', 0.63275545835495),('drunkard', 0.6136815547943115),('gentleman', 0.6122575998306274),('lover', 0.6108279228210449),('thief', 0.609005331993103),('beggar', 0.6083744764328003),('person', 0.597919225692749)]

再来看看其他几个相关接口:

In [8]: en_wiki_word2vec_model.most_similar(positive=['woman', 'king'], negative=['man'], topn=1)
Out[8]: [('queen', 0.7752252817153931)]In [9]: en_wiki_word2vec_model.similarity('woman', 'man')
Out[9]: 0.72430799548282099In [10]: en_wiki_word2vec_model.doesnt_match("breakfast cereal dinner lunch".split())
Out[10]: 'cereal'

我把这篇文章的相关代码还有另一篇“中英文维基百科语料上的Word2Vec实验”的相关代码整理了一下,在github上建立了一个 Wikipedia_Word2vec 的项目,感兴趣的同学可以参考。

注:原创文章,转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn

本文链接地址:维基百科语料中的词语相似度探索 http://www.52nlp.cn/?p=9454

转载于:https://www.cnblogs.com/huaxingtianxia/p/9214673.html

这篇关于维基百科语料中的词语相似度探索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/226351

相关文章

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

轻松录制每一刻:探索2024年免费高清录屏应用

你不会还在用一些社交工具来录屏吧?现在的市面上有不少免费录屏的软件了。别看如软件是免费的,它的功能比起社交工具的录屏功能来说全面的多。这次我就分享几款我用过的录屏工具。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  这个软件的操作方式非常简单,打开软件之后从界面设计就能看出来这个软件操作的便捷性。界面的设计简单明了基本一打眼你就会轻松驾驭啦

深入探索嵌入式 Linux

摘要:本文深入探究嵌入式 Linux。首先回顾其发展历程,从早期尝试到克服诸多困难逐渐成熟。接着阐述其体系结构,涵盖硬件、内核、文件系统和应用层。开发环境方面包括交叉编译工具链、调试工具和集成开发环境。在应用领域,广泛应用于消费电子、工业控制、汽车电子和智能家居等领域。关键技术有内核裁剪与优化、设备驱动程序开发、实时性增强和电源管理等。最后展望其未来发展趋势,如与物联网融合、人工智能应用、安全性与

【vue3|第28期】 Vue3 + Vue Router:探索路由重定向的使用与作用

日期:2024年9月8日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉在这里插入代码片得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方,还望各位大佬不吝赐教,谢谢^ - ^ 1.01365 = 37.7834;0.99365 = 0.0255 1.02365 = 1377.4083;0.98365 = 0.0006 说

多云架构下大模型训练的存储稳定性探索

一、多云架构与大模型训练的融合 (一)多云架构的优势与挑战 多云架构为大模型训练带来了诸多优势。首先,资源灵活性显著提高,不同的云平台可以提供不同类型的计算资源和存储服务,满足大模型训练在不同阶段的需求。例如,某些云平台可能在 GPU 计算资源上具有优势,而另一些则在存储成本或性能上表现出色,企业可以根据实际情况进行选择和组合。其次,扩展性得以增强,当大模型的规模不断扩大时,单一云平

探索Invoke:Python自动化任务的瑞士军刀

文章目录 探索Invoke:Python自动化任务的瑞士军刀背景:为何选择Invoke?`invoke`是什么?如何安装`invoke`?简单的`invoke`库函数使用方法场景应用:`invoke`在实际项目中的使用场景一:自动化测试场景二:代码格式化场景三:部署应用 常见问题与解决方案问题一:命令执行失败问题二:权限不足问题三:并发执行问题 总结 探索Invoke:P

使用亚马逊Bedrock的Stable Diffusion XL模型实现文本到图像生成:探索AI的无限创意

引言 什么是Amazon Bedrock? Amazon Bedrock是亚马逊云服务(AWS)推出的一项旗舰服务,旨在推动生成式人工智能(AI)在各行业的广泛应用。它的核心功能是提供由顶尖AI公司(如AI21 Labs、Anthropic、Cohere、Meta、Mistral AI、Stability AI以及亚马逊自身)开发的多种基础模型(Foundation Models,简称FMs)。