Weka Explorer(探索者界面) 详解(3)决策树算法,分类器评价标准说明

本文主要是介绍Weka Explorer(探索者界面) 详解(3)决策树算法,分类器评价标准说明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇文章中我会通过几个例子向大家介绍一些weka中经典的数据挖掘算法和评估算法的手段。

J4.8 决策树算法

在预处理标签页 点击 open file ,选择 Weka 安装目录下 data 文件夹中的 weather.numberic.arff 。(在这个目录中有很多经典的样本)

进入分类器标签,点击 Choose 按钮,开始选择分类器算法。在弹出的树状目录中找到 trees 节点,打开它,选择 J48 算法。验证方式选择 10折交叉验证。点击 Start 开始分类。

J4.8算法是著名的决策树算法C4.5的一个改进版,也是最后一个免费版本。选完这个算法后可以看到weka对J48算法赋予了默认参数:-C 0.25 -M 2。前者是用于剪枝的置信因子,后者指定了每个叶结点最小的实例数。详见:http://blog.csdn.net/buaalei/article/details/7105965。

运行完成后可以在 output 界面查看结果。

outlook = sunny
|   humidity <= 75: yes (2.0)
|   humidity > 75: no (3.0)
outlook = overcast: yes (4.0)
outlook = rainy
|   windy = TRUE: no (2.0)
|   windy = FALSE: yes (3.0)
括号内的数字表示有多少实例到达该叶结点。如果有错误的分类,则括号内会出现两个数字,比如(2.0/1.0),表示其中有一个节点是错误分类。

在 output 版面的最后可以看到一些 高级的统计数据,如下图:



我们一个一个解释:

Kappa statistic:

这个参数是把分类器与随机分类器作比较得出的一个对分类器的评价值。那么0.186是怎么计算出来的呢?

从output 版面的最下面的 confusion matrix(混淆矩阵)中,我们发现分类器把10个实例预测成了a情况(其中7对3错),4个实例预测成了b情况(2对2错)。如果换做一个随机分类器,也把10个实例预测成了a,4个实例预测成了b,那么该随机分类器的预测准确情况会是什么样的?按照概率分布,正确地预测a的概率为9/14,正确地预测b的概率为5/14。所以该分类器能准确预测的实例个数为 10×(9/14)+4×(5/14)=110/14≈7.85。Kappa=(9-7.85)÷(14-7.85)≈0.186

参考文献:http://biostatistics.cmu.edu.tw/online/teaching_corner_011.pdf

Mean absolute error 和 Root mean squared error: 

平均绝对误差,用来衡量分类器预测值和实际结果的差异,越小越好。


Relative absolute error 和 Root relative squared error:

举个例子来说明:实际值为500,预测值为450,则绝对误差为50;实际值为2,预测值为1.8,则绝对误差为0.2。这两个数字50和0.2差距很大,但是表示的误差率同为10%,所以有时绝对误差不能体现误差的真实大小,而相对误差通过体现误差占真值的比重来反映误差大小,效果更佳。

详见:http://www.doc88.com/p-89192423133.html


TP,FP:

TP表示识别率,对某一分类的实例,有多少概率把它识别出来。提高识别率在医疗系统中很重要,如果病人有病,却没有识别出来,后果很严重!
FP表示误判率,对其他分类的实例,有多少概率把实例识别成本分类。

Precision:

精准度。表示对某一个类别的分类中,正确的实例数占总数的比率。

Recall:

召回率,又称查全率。表示识别正确的实例数,占该类别的实例的总数。由于本例中没有未识别的实例,所以Recall=TP。


F-Measure:

这个值是精准度和召回率的综合,在现实中精准度和召回率往往不可兼得,所以引入了F值,F值越大说明精准度和召回率都相对较高,详见:http://baike.baidu.com/link?url=3mOTzT44pst0QuciABcnqnIHV-RI3XrfldYTZrPRxq6uEnttl-IQnVC-c2HOJ3jTvAXgXKSi3htc86bsamPoQq 

ROC Area:

详见:http://blog.csdn.net/rav009/article/details/9096867

混淆矩阵Confusion Matrix:

第一行的“7”表示有7个a情况的实例得到正确分类,第一行的“2”表示有2个a情况被错误地分类成了b。
第二行的“3”表示有3个b情况的实例被错误的分类成了啊,第二行的”2“表示有2个b情况得到正确的分类。

这篇关于Weka Explorer(探索者界面) 详解(3)决策树算法,分类器评价标准说明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/224815

相关文章

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Mysql 中的多表连接和连接类型详解

《Mysql中的多表连接和连接类型详解》这篇文章详细介绍了MySQL中的多表连接及其各种类型,包括内连接、左连接、右连接、全外连接、自连接和交叉连接,通过这些连接方式,可以将分散在不同表中的相关数据... 目录什么是多表连接?1. 内连接(INNER JOIN)2. 左连接(LEFT JOIN 或 LEFT

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

Redis分布式锁使用及说明

《Redis分布式锁使用及说明》本文总结了Redis和Zookeeper在高可用性和高一致性场景下的应用,并详细介绍了Redis的分布式锁实现方式,包括使用Lua脚本和续期机制,最后,提到了RedLo... 目录Redis分布式锁加锁方式怎么会解错锁?举个小案例吧解锁方式续期总结Redis分布式锁如果追求

详解Java中的敏感信息处理

《详解Java中的敏感信息处理》平时开发中常常会遇到像用户的手机号、姓名、身份证等敏感信息需要处理,这篇文章主要为大家整理了一些常用的方法,希望对大家有所帮助... 目录前后端传输AES 对称加密RSA 非对称加密混合加密数据库加密MD5 + Salt/SHA + SaltAES 加密平时开发中遇到像用户的

结构体和联合体的区别及说明

《结构体和联合体的区别及说明》文章主要介绍了C语言中的结构体和联合体,结构体是一种自定义的复合数据类型,可以包含多个成员,每个成员可以是不同的数据类型,联合体是一种特殊的数据结构,可以在内存中共享同一... 目录结构体和联合体的区别1. 结构体(Struct)2. 联合体(Union)3. 联合体与结构体的

Springboot使用RabbitMQ实现关闭超时订单(示例详解)

《Springboot使用RabbitMQ实现关闭超时订单(示例详解)》介绍了如何在SpringBoot项目中使用RabbitMQ实现订单的延时处理和超时关闭,通过配置RabbitMQ的交换机、队列和... 目录1.maven中引入rabbitmq的依赖:2.application.yml中进行rabbit

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.