爬虫 | 【实践】Best Computer Science Scientists数据爬取

2023-10-16 22:52

本文主要是介绍爬虫 | 【实践】Best Computer Science Scientists数据爬取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 📚数据需求
  • 📚数据爬取
    • 🐇排行榜页数据爬取
    • 🐇获取详情页
    • 🐇目标信息提取
  • 📚完整代码与结果

📚数据需求

  • 姓名,国家,学校
    在这里插入图片描述

  • 最有名研究领域
    在这里插入图片描述

  • 目前研究领域
    在这里插入图片描述

  • 共同作者
    在这里插入图片描述

  • D-index、引用、出版物、世界排名、国家排名
    在这里插入图片描述

📚数据爬取

🐇排行榜页数据爬取

# 以for循环实现翻页,总共20页
for page in range(1, 21):# 前缀f表示该字符串是一个格式化字符串,允许我们在字符串中嵌入变量或表达式的值。# 这里嵌入变量page,实现翻页后的url对应url = f"https://research.com/scientists-rankings/computer-science?page={page}"# 获得响应response = requests.get(url=url, headers=headers)# 智能解码response.encoding = response.apparent_encoding# 使用etree.HTML函数将HTML文本转换为可进行XPath操作的树结构对象tree。tree = etree.HTML(response.text)# 提取id为"rankingItems"元素下的所有div子元素的列表div_list = tree.xpath('//*[@id="rankingItems"]/div')
  • 定位到id="rankingItems
    在这里插入图片描述
  • 每一个div是每一条排行记录
    在这里插入图片描述

🐇获取详情页

# 循环取出div_list内容for i in div_list:# 获取当前科学家的详情页地址href = 'https://research.com' + i.xpath('.//div//h4/a/@href')[0]print(href)# 调用等待时间函数,防止宕机random_wait()# 获得详情页响应response_detail = requests.get(url=href, headers=headers)# 智能解码response.encoding = response.apparent_encoding# 使用etree.HTML函数将HTML文本转换为可进行XPath操作的树结构对象tree。tree_detail = etree.HTML(response_detail.text)
  • .//div//h4/a/@href获取对应科学家详情页相关信息,通过href = 'https://research.com' + i.xpath('.//div//h4/a/@href')[0]得到详情页url
    在这里插入图片描述
  • 对应详情页url如下所示
    在这里插入图片描述

🐇目标信息提取

  • 姓名
    # 名字,依次找到htm → body → 第1个div → 第2个div → 第1个div → div → h1元素,匹配文本内容
    # .strip()用于去除文本内容两端的空白字符,包括空格、制表符和换行符。
    name = tree_detail.xpath('/html/body/div[1]/div[2]/div[1]/div/h1/text()')[0].strip()
    
    在这里插入图片描述

  • 国家

    country = tree_detail.xpath('/html/body/div[1]/div[2]/div[1]/div/div/p/a[2]/text()')[0].strip()
    

    在这里插入图片描述


  • 学校

    university = tree_detail.xpath('/html/body/div[1]/div[2]/div[1]/div/div/p/a[1]/text()')[0].strip()
    

    在这里插入图片描述


  • 最有名研究领域

    try:research_field1 = tree_detail.xpath('//*[@class="tab bg-white shadow"]//ul[1]/li/text()')[0].strip()research_field2 = tree_detail.xpath('//*[@class="tab bg-white shadow"]//ul[1]/li/text()')[1].strip()research_field3 = tree_detail.xpath('//*[@class="tab bg-white shadow"]//ul[1]/li/text()')[2].strip()
    except:# 异常处理,有些详情页无对应数据research_field1="无研究领域"research_field2="无研究领域"research_field3 ="无研究领域"
    

    在这里插入图片描述


  • 目前研究领域

    try:
    # 目前研究领域# 将匹配正则表达式pattern的内容替换为空字符串。删除括号及其内部的内容。now_research_field1 = re.sub(pattern, '', tree_detail.xpath('//*[@class="tab bg-white shadow"]//ul[4]/li/text()')[0].strip())now_research_field2 = re.sub(pattern, '', tree_detail.xpath('//*[@class="tab bg-white shadow"]//ul[4]/li/text()')[1].strip())now_research_field3 = re.sub(pattern, '', tree_detail.xpath('//*[@class="tab bg-white shadow"]//ul[4]/li/text()')[2].strip())
    except:now_research_field1="无研究领域"now_research_field2="无研究领域"now_research_field3 ="无研究领域"
    

    在这里插入图片描述


  • 共同作者
    # 共同作者,定位后源码里的第一个div不要
    Frequent_CoAuthors = tree_detail.xpath('/html/body/div[1]/div[4]/div[2]/div/div')[1:]
    # 共同关系的人
    for i in Frequent_CoAuthors:common_name = i.xpath('.//h4/a/text()')[0].strip().replace('\n', '')friend_list.append(common_name)
    # 将共同关系的人拼成一个字符串
    result = ', '.join(friend_list)
    
    • tree_detail.xpath('/html/body/div[1]/div[4]/div[2]/div/div')[1:]——定位到列表框
      在这里插入图片描述
    • i.xpath('.//h4/a/text()')[0].strip().replace('\n', '')——定位到每个人
      在这里插入图片描述

  • 各项数据、排名等

    # 各项数据,排名等等,[-1:]返回匹配结果列表中的最后一个元素
    data_list = tree_detail.xpath('//*[@id="tab-1"]/div/div')[-1:]
    for a in data_list:# D-indexD_index = a.xpath('.//span[2]//text()')[-1].replace(' ', '').replace('\n', '')# 引用Citations = a.xpath('.//span[3]//text()')[-1].replace(' ', '').replace('\n', '').replace(',', '')# 出版物publication = a.xpath('.//span[4]//text()')[-1].replace(' ', '').replace('\n', '').replace(',', '')# 世界排名world_rank = a.xpath('.//span[5]//text()')[-1].replace(' ', '').replace('\n', '')# 国家排名national_rank = a.xpath('.//span[6]//text()')[-1].replace(' ', '').replace('\n', '')
    
    • //*[@id="tab-1"]/div/div——定位到数据表格
      在这里插入图片描述

    • a.xpath('.//span[2]//text()')[-1]——D-index 在这里插入图片描述

    • a.xpath('.//span[3]//text()')[-1]——引用
      在这里插入图片描述

    • a.xpath('.//span[4]//text()')[-1]——出版物
      在这里插入图片描述

    • 世界排名和国家排名

       # 世界排名world_rank = a.xpath('.//span[5]//text()')[-1].replace(' ', '').replace('\n', '')# 国家排名national_rank = a.xpath('.//span[6]//text()')[-1].replace(' ', '').replace('\n', '')
      

      在这里插入图片描述

      在这里插入图片描述

📚完整代码与结果

import requests
from lxml import etree
import openpyxl
import re
import random
import time# 随机等待时间的函数
# 避免以高频率向服务器发送请求造成宕机
def random_wait():# 生成一个随机的等待时间,范围为1到5秒wait_time = random.uniform(1, 5)time.sleep(wait_time)# openpyxl用于操作Excel文件。它允许我们读取、写入和修改Excel文件中的数据。
# 创建一个新的Excel工作簿对象
workbook = openpyxl.Workbook()
# 返回工作簿中的活动工作表对象,表明之后的代码对这个工作表进行操作
worksheet = workbook.active
# 添加标题
worksheet.append(['姓名', '国家', '学校', '最有名研究领域1', '最有名研究领域2', '最有名研究领域3', '目前研究领域1', '目前研究领域2','目前研究领域3', '共同作者', 'D-index', '引用', '出版物', '世界排名', '国家排名'])# 伪装请求头
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/118.0'
}# 以for循环实现翻页,总共20页
for page in range(1, 21):# 前缀f表示该字符串是一个格式化字符串,允许我们在字符串中嵌入变量或表达式的值。# 这里嵌入变量page,实现翻页后的url对应url = f"https://research.com/scientists-rankings/computer-science?page={page}"# 获得响应response = requests.get(url=url, headers=headers)# 智能解码response.encoding = response.apparent_encoding# 使用etree.HTML函数将HTML文本转换为可进行XPath操作的树结构对象tree。tree = etree.HTML(response.text)# 提取id为"rankingItems"元素下的所有div子元素的列表div_list = tree.xpath('//*[@id="rankingItems"]/div')# 循环取出div_list内容for i in div_list:# 获取当前科学家的详情页地址href = 'https://research.com' + i.xpath('.//div//h4/a/@href')[0]print(href)# 调用等待时间函数,防止宕机random_wait()# 获得详情页响应response_detail = requests.get(url=href, headers=headers)# 智能解码response.encoding = response.apparent_encoding# 使用etree.HTML函数将HTML文本转换为可进行XPath操作的树结构对象tree。tree_detail = etree.HTML(response_detail.text)# 用于删除括号及其内部的内容,主要是对后边最近研究领域后续括号内的百分比进行删除pattern = r'\([^()]*\)'# 存取共同作者的列表friend_list = []try:# 名字,依次找到htm → body → 第1个div → 第2个div → 第1个div → div → h1元素,匹配文本内容# .strip()用于去除文本内容两端的空白字符,包括空格、制表符和换行符。name = tree_detail.xpath('/html/body/div[1]/div[2]/div[1]/div/h1/text()')[0].strip()# 国家country = tree_detail.xpath('/html/body/div[1]/div[2]/div[1]/div/div/p/a[2]/text()')[0].strip()# 学校university = tree_detail.xpath('/html/body/div[1]/div[2]/div[1]/div/div/p/a[1]/text()')[0].strip()# 最有名研究领域try:research_field1 = tree_detail.xpath('//*[@class="tab bg-white shadow"]//ul[1]/li/text()')[0].strip()research_field2 = tree_detail.xpath('//*[@class="tab bg-white shadow"]//ul[1]/li/text()')[1].strip()research_field3 = tree_detail.xpath('//*[@class="tab bg-white shadow"]//ul[1]/li/text()')[2].strip()except:# 异常处理,有些详情页无对应数据research_field1="无研究领域"research_field2="无研究领域"research_field3 ="无研究领域"try:# 目前研究领域# 将匹配正则表达式pattern的内容替换为空字符串。删除括号及其内部的内容。now_research_field1 = re.sub(pattern, '', tree_detail.xpath('//*[@class="tab bg-white shadow"]//ul[4]/li/text()')[0].strip())now_research_field2 = re.sub(pattern, '', tree_detail.xpath('//*[@class="tab bg-white shadow"]//ul[4]/li/text()')[1].strip())now_research_field3 = re.sub(pattern, '', tree_detail.xpath('//*[@class="tab bg-white shadow"]//ul[4]/li/text()')[2].strip())except:now_research_field1="无研究领域"now_research_field2="无研究领域"now_research_field3 ="无研究领域"# 共同作者,定位后源码里的第一个div不要Frequent_CoAuthors = tree_detail.xpath('/html/body/div[1]/div[4]/div[2]/div/div')[1:]# 共同关系的人for i in Frequent_CoAuthors:common_name = i.xpath('.//h4/a/text()')[0].strip().replace('\n', '')friend_list.append(common_name)# 将共同关系的人拼成一个字符串result = ', '.join(friend_list)# 各项数据,排名等等,[-1:]返回匹配结果列表中的最后一个元素data_list = tree_detail.xpath('//*[@id="tab-1"]/div/div')[-1:]for a in data_list:# D-indexD_index = a.xpath('.//span[2]//text()')[-1].replace(' ', '').replace('\n', '')# 引用Citations = a.xpath('.//span[3]//text()')[-1].replace(' ', '').replace('\n', '').replace(',', '')# 出版物publication = a.xpath('.//span[4]//text()')[-1].replace(' ', '').replace('\n', '').replace(',', '')# 世界排名world_rank = a.xpath('.//span[5]//text()')[-1].replace(' ', '').replace('\n', '')# 国家排名national_rank = a.xpath('.//span[6]//text()')[-1].replace(' ', '').replace('\n', '')print(name, country, university, research_field1, research_field2, research_field3, now_research_field1,now_research_field2, now_research_field3, result, D_index, Citations, publication, world_rank, national_rank)# 清空列表friend_list.clear()# 将数据添加到excel表格内worksheet.append([name, country, university, research_field1, research_field2, research_field3, now_research_field1,now_research_field2, now_research_field3, result, D_index, Citations, publication, world_rank, national_rank])# 保存workbook.save('world_data.csv')except:worksheet.append(['无数据', '无数据', '无数据', '无数据', '无数据', '无数据', '无数据', '无数据', '无数据', '无数据', '无数据', '无数据', '无数据', '无数据', '无数据'])# 保存workbook.save('world_data.csv')

在这里插入图片描述在这里插入图片描述

这篇关于爬虫 | 【实践】Best Computer Science Scientists数据爬取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/221299

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识