时序预测 | MATLAB实现GWO-ELM灰狼优化算法优化极限学习机时间序列预测

本文主要是介绍时序预测 | MATLAB实现GWO-ELM灰狼优化算法优化极限学习机时间序列预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时序预测 | MATLAB实现GWO-ELM灰狼优化算法优化极限学习机时间序列预测

目录

    • 时序预测 | MATLAB实现GWO-ELM灰狼优化算法优化极限学习机时间序列预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

1.MATLAB实现GWO-ELM灰狼优化算法优化极限学习机时间序列预测;
2.单变量时间序列预测;
3.运行环境Matlab2018及以上,运行主程序main即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集;
4.SSA-ELM麻雀算法优化极限学习机权值和偏置,命令窗口输出RMSE、MAE、R2、MAPE等评价指标。

程序设计

  • 完整程序和数据下载方式1(资源处直接下载):MATLAB实现GWO-ELM灰狼优化算法优化极限学习机时间序列预测
  • 完整程序和数据下载方式2(订阅《ELM极限学习机》专栏,同时可阅读《ELM极限学习机》专栏收录的所有内容,数据订阅后私信我获取):MATLAB实现GWO-ELM灰狼优化算法优化极限学习机时间序列预测
  • 完整程序和数据下载方式3(订阅《智能学习》专栏,同时获取《智能学习》专栏收录程序5份,数据订阅后私信我获取):MATLAB实现GWO-ELM灰狼优化算法优化极限学习机时间序列预测
% Grey Wolf Optimizer
function [Best_pos,Best_score,curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)% initialize alpha, beta, and delta_pos
Best_pos=zeros(1,dim);
Best_score=inf; %change this to -inf for maximization problemsBeta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problemsDelta_pos=zeros(1,dim);
Delta_score=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);curve=zeros(1,Max_iter);l=0;% Loop counter% Main loop
while l<Max_iterfor i=1:size(Positions,1)  % Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               % Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update Alpha, Beta, and Deltaif fitness<Best_score Best_score=fitness; % Update alphaBest_pos=Positions(i,:);endif fitness>Best_score && fitness<Beta_score Beta_score=fitness; % Update betaBeta_pos=Positions(i,:);endif fitness>Best_score && fitness>Beta_score && fitness<Delta_score Delta_score=fitness; % Update deltaDelta_pos=Positions(i,:);endenda=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0% Update the Position of search agents including omegasfor i=1:size(Positions,1)for j=1:size(Positions,2)     r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A1=2*a*r1-a; % Equation (3.3)C1=2*r2; % Equation (3.4)D_alpha=abs(C1*Best_pos(j)-Positions(i,j)); % Equation (3.5)-part 1X1=Best_pos(j)-A1*D_alpha; % Equation (3.6)-part 1r1=rand();r2=rand();A2=2*a*r1-a; % Equation (3.3)C2=2*r2; % Equation (3.4)D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       r1=rand();r2=rand(); A3=2*a*r1-a; % Equation (3.3)C3=2*r2; % Equation (3.4)D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)endendl=l+1;    curve(l)=Best_score;
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

这篇关于时序预测 | MATLAB实现GWO-ELM灰狼优化算法优化极限学习机时间序列预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/217288

相关文章

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被