Tensorflow2 中对模型进行编译,不同loss函数的选择下输入数据格式需求变化

本文主要是介绍Tensorflow2 中对模型进行编译,不同loss函数的选择下输入数据格式需求变化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、tf2中常用的损失函数介绍

在 TensorFlow 2 中,编译模型时可以选择不同的损失函数来定义模型的目标函数。不同的损失函数适用于不同的问题类型和模型架构。下面是几种常见的损失函数以及它们的作用和适用场景:

1.均方误差(Mean Squared Error, MSE):MSE 是回归问题中常用的损失函数,用于衡量预测值与真实值之间的平均平方差。较大的误差会得到更大的惩罚,适用于回归任务。

model.compile(loss='mse', ...)

2.二进制交叉熵(Binary Cross Entropy):二进制交叉熵是二分类问题中常用的损失函数,用于衡量两个类别之间的差异性。适用于二分类问题,输出为一个概率值的 sigmoid 激活的模型。

model.compile(loss='binary_crossentropy', ...)

3.多类交叉熵(Categorical Cross Entropy):多类交叉熵是多分类问题中常用的损失函数,用于衡量多个类别之间的差异性。适用于多分类问题,输出为每个类别的概率分布的 softmax 激活的模型。

model.compile(loss='categorical_crossentropy', ...)

4.稀疏分类交叉熵(Sparse Categorical Cross Entropy):类似于多类交叉熵,但适用于标签以整数形式表示的多分类问题,而不是 one-hot 编码。

model.compile(loss='sparse_categorical_crossentropy', ...)

5.KL 散度损失(Kullback-Leibler Divergence):KL 散度用于衡量两个概率分布的差异性。在生成模型中,常与自动编码器等模型结合使用,促使模型输出接近于预定义的概率分布。

model.compile(loss='kullback_leibler_divergence', ...)

除了上述常见的损失函数之外,还有其他一些定制化的损失函数,可以根据具体任务和需求来自定义。通过 tf.keras.losses 模块,您可以查看更多可用的损失函数,并选择适合自己模型的损失函数。在选择损失函数时,需要根据任务类型、数据分布以及模型设计进行合理选择,以获得最佳的训练效果。

二、两种损失函数的比较分析

多类交叉熵(Categorical Cross Entropy)和稀疏分类交叉熵(Sparse Categorical Cross Entropy)

相同点:都可用于数据多分类任务。

不同点:对数据的输入要求不一样,多类交叉熵(Categorical Cross Entropy)要求数据为one-hot 编码,这个主要是针对数据的标签数据,比如我们的数据标签数据读取的时候,其类别是0-9,这个数据可以是一列数据,这个时候我们可以使用稀疏分类交叉熵(Sparse Categorical Cross Entropy)函数直接进行编译。

one_hot编码(独热编码)说明:

一种将每个元素表示为二进制向量的编码方式,其中只有一个元素为1,其余元素都为0。例如,如果我们有一个长度为N的列表,那么它的one-hot编码将是一个NxN的矩阵,其中第i行表示第i个元素的编码。例如,如果我们有一个包含3种颜色的列表["红","蓝","绿"],那么它们的one-hot编码将是:

红:[1,0,0] 蓝:[0,1,0] 绿:[0,0,1]

这种编码方式常用于机器学习中,可以将每个类别标签转换为one-hot向量以便进行训练。

如果是使用多类交叉熵(Categorical Cross Entropy)作为损失函数,那么我们对数据进行one-hot编码,代码有的地方使用:

y_train=tf.keras.utils.to_categorical(y_train) #报错y_test=tf.keras.utils.to_categorical(y_test)

在tensorflow2.5环境下报错:

tensorflow.python.framework.errors_impl.InvalidArgumentError:  logits and labels must have the same first dimension, got logits shape [12,16] and labels shape [204][[node sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits (defined at /PycharmProjects/pythonProject/ML_New/MLP_Classifier_tf/MLP_Classifier_tf_imgVali.py:286) ]] [Op:__inference_train_function_762]Function call stack:
train_function

这里我们可以使用以下代码替代:

y_train_one_hot = tf.one_hot(y_train, depth=num_classes)
y_test_one_hot = tf.one_hot(y_test, depth=num_classes)

三、示例代码分析

Sparse Categorical Cross Entropy和Categorical Cross Entropy对应的损失函数围为:

loss='sparse_categorical_crossentropy'    loss='categorical_crossentropy'

使用minist数据做一个简单的MLP模型分类,这里先使用Sparse Categorical Cross Entropy损失函数。代码如下:

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense# 准备数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 784) / 255.0
x_test = x_test.reshape(-1, 784) / 255.0# 构建模型
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=784))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=10, batch_size=32, validation_data=(x_test, y_test))# 评估模型
loss, accuracy = model.evaluate(x_test, y_test)
print('Test Loss:', loss)
print('Test Accuracy:', accuracy)# 使用模型进行预测
predictions = model.predict(x_test[:5])
print('Predictions:', tf.argmax(predictions, axis=1))
print('Labels:', y_test[:5])

运行结果如下:

D:\PycharmProjects\pythonProject\venv\Scripts\python.exe D:/PycharmProjects/pythonProject/ML_New/MLP_Classifier_tf/MLP_TEST_MINIST.py
2023-10-14 22:28:27.465600: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cudart64_110.dll
2023-10-14 22:28:30.610122: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library nvcuda.dll
2023-10-14 22:28:30.637119: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: 
pciBusID: 0000:01:00.0 name: NVIDIA GeForce RTX 2070 computeCapability: 7.5
coreClock: 1.62GHz coreCount: 36 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 417.29GiB/s
2023-10-14 22:28:30.637445: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cudart64_110.dll
2023-10-14 22:28:30.648571: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cublas64_11.dll
2023-10-14 22:28:30.648748: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cublasLt64_11.dll
2023-10-14 22:28:30.652682: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cufft64_10.dll
2023-10-14 22:28:30.654729: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library curand64_10.dll
2023-10-14 22:28:30.657643: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cusolver64_11.dll
2023-10-14 22:28:30.661178: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cusparse64_11.dll
2023-10-14 22:28:30.662311: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cudnn64_8.dll
2023-10-14 22:28:30.662510: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
2023-10-14 22:28:30.662864: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-10-14 22:28:30.663583: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: 
pciBusID: 0000:01:00.0 name: NVIDIA GeForce RTX 2070 computeCapability: 7.5
coreClock: 1.62GHz coreCount: 36 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 417.29GiB/s
2023-10-14 22:28:30.663941: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
2023-10-14 22:28:31.130464: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix:
2023-10-14 22:28:31.130645: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264]      0 
2023-10-14 22:28:31.130748: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0:   N 
2023-10-14 22:28:31.130967: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6001 MB memory) -> physical GPU (device: 0, name: NVIDIA GeForce RTX 2070, pci bus id: 0000:01:00.0, compute capability: 7.5)
2023-10-14 22:28:31.709522: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
Epoch 1/10
2023-10-14 22:28:31.920032: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cublas64_11.dll
2023-10-14 22:28:32.369951: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cublasLt64_11.dll
1875/1875 [==============================] - 5s 2ms/step - loss: 0.2845 - accuracy: 0.9174 - val_loss: 0.1443 - val_accuracy: 0.9547
Epoch 2/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.1261 - accuracy: 0.9633 - val_loss: 0.1085 - val_accuracy: 0.9646
Epoch 3/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0937 - accuracy: 0.9716 - val_loss: 0.1034 - val_accuracy: 0.9690
Epoch 4/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0731 - accuracy: 0.9772 - val_loss: 0.0987 - val_accuracy: 0.9714
Epoch 5/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0612 - accuracy: 0.9810 - val_loss: 0.0828 - val_accuracy: 0.9749
Epoch 6/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0507 - accuracy: 0.9835 - val_loss: 0.0955 - val_accuracy: 0.9702
Epoch 7/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0430 - accuracy: 0.9859 - val_loss: 0.0863 - val_accuracy: 0.9746
Epoch 8/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0374 - accuracy: 0.9874 - val_loss: 0.0935 - val_accuracy: 0.9737
Epoch 9/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.0328 - accuracy: 0.9894 - val_loss: 0.0902 - val_accuracy: 0.9754
Epoch 10/10
1875/1875 [==============================] - 6s 3ms/step - loss: 0.0287 - accuracy: 0.9900 - val_loss: 0.0902 - val_accuracy: 0.9771
313/313 [==============================] - 1s 2ms/step - loss: 0.0902 - accuracy: 0.9771
Test Loss: 0.09022707492113113
Test Accuracy: 0.9771000146865845
Predictions: tf.Tensor([7 2 1 0 4], shape=(5,), dtype=int64)
Labels: [7 2 1 0 4]Process finished with exit code 0

我们将损失函数修改为Categorical Cross Entropy运行代码就会报错

 ValueError: Shapes (32, 1) and (32, 10) are incompatible

这是因为我们没有将标签数据转化为独热编码,我们转换一下,,在model.fit()函数前加上:

y_train = tf.one_hot(y_train, depth=10)
y_test= tf.one_hot(y_test, depth=10)

运行结果如下:

D:\PycharmProjects\pythonProject\venv\Scripts\python.exe D:/PycharmProjects/pythonProject/ML_New/MLP_Classifier_tf/MLP_TEST_MINIST.py
2023-10-14 23:20:04.708405: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cudart64_110.dll
2023-10-14 23:20:07.803493: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library nvcuda.dll
2023-10-14 23:20:07.833164: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: 
pciBusID: 0000:01:00.0 name: NVIDIA GeForce RTX 2070 computeCapability: 7.5
coreClock: 1.62GHz coreCount: 36 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 417.29GiB/s
2023-10-14 23:20:07.833480: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cudart64_110.dll
2023-10-14 23:20:07.840527: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cublas64_11.dll
2023-10-14 23:20:07.840689: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cublasLt64_11.dll
2023-10-14 23:20:07.844132: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cufft64_10.dll
2023-10-14 23:20:07.845657: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library curand64_10.dll
2023-10-14 23:20:07.848488: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cusolver64_11.dll
2023-10-14 23:20:07.852061: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cusparse64_11.dll
2023-10-14 23:20:07.853130: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cudnn64_8.dll
2023-10-14 23:20:07.853317: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
2023-10-14 23:20:07.853652: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-10-14 23:20:07.854467: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: 
pciBusID: 0000:01:00.0 name: NVIDIA GeForce RTX 2070 computeCapability: 7.5
coreClock: 1.62GHz coreCount: 36 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 417.29GiB/s
2023-10-14 23:20:07.854879: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
2023-10-14 23:20:08.326771: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix:
2023-10-14 23:20:08.326942: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264]      0 
2023-10-14 23:20:08.327041: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0:   N 
2023-10-14 23:20:08.327252: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6001 MB memory) -> physical GPU (device: 0, name: NVIDIA GeForce RTX 2070, pci bus id: 0000:01:00.0, compute capability: 7.5)
2023-10-14 23:20:08.914697: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
Epoch 1/10
2023-10-14 23:20:09.138669: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cublas64_11.dll1/1875 [..............................] - ETA: 21:57 - loss: 2.4066 - accuracy: 0.12502023-10-14 23:20:09.626287: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cublasLt64_11.dll
1875/1875 [==============================] - 6s 3ms/step - loss: 0.2784 - accuracy: 0.9182 - val_loss: 0.1517 - val_accuracy: 0.9510
Epoch 2/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.1217 - accuracy: 0.9633 - val_loss: 0.1258 - val_accuracy: 0.9611
Epoch 3/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0874 - accuracy: 0.9731 - val_loss: 0.1045 - val_accuracy: 0.9666
Epoch 4/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0701 - accuracy: 0.9778 - val_loss: 0.0929 - val_accuracy: 0.9718
Epoch 5/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0569 - accuracy: 0.9821 - val_loss: 0.0853 - val_accuracy: 0.9751
Epoch 6/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0488 - accuracy: 0.9844 - val_loss: 0.0911 - val_accuracy: 0.9706
Epoch 7/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0402 - accuracy: 0.9868 - val_loss: 0.0847 - val_accuracy: 0.9748
Epoch 8/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0355 - accuracy: 0.9882 - val_loss: 0.0975 - val_accuracy: 0.9723
Epoch 9/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0307 - accuracy: 0.9895 - val_loss: 0.1027 - val_accuracy: 0.9743
Epoch 10/10
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0281 - accuracy: 0.9907 - val_loss: 0.1004 - val_accuracy: 0.9734
313/313 [==============================] - 1s 2ms/step - loss: 0.1004 - accuracy: 0.9734
Test Loss: 0.10037881135940552
Test Accuracy: 0.9733999967575073
Predictions: tf.Tensor([7 2 1 0 4], shape=(5,), dtype=int64)
Labels: tf.Tensor(
[[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.][0. 0. 1. 0. 0. 0. 0. 0. 0. 0.][0. 1. 0. 0. 0. 0. 0. 0. 0. 0.][1. 0. 0. 0. 0. 0. 0. 0. 0. 0.][0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]], shape=(5, 10), dtype=float32)Process finished with exit code 0

注意事项:

使用稀疏交叉熵损失函数编译的模型的预测结果标签从0开始。如果自己的数据是从1开始的,那么后面做验证分析的时候需要注意两者应该保持一致。

在使用稀疏交叉熵损失函数进行多分类问题训练时,标签通常使用整数表示,并且标签值的范围是从0到类别数量减1。模型的输出也应该是每个类别的概率分布。

例如,如果有3个类别,标签将被编码为0、1和2,并且模型的输出将是一个长度为3的概率分布向量,表示对每个类别的预测概率。

在预测时,模型会返回对每个类别的预测概率,通过取最大概率对应的索引,就可以得到预测的类别。这个索引范围是从0到类别数量减1。与稀疏交叉熵不同,使用普通的(非稀疏)交叉熵损失函数时,标签通常使用 one-hot 编码,其中每个类别都由一个向量表示,只有真实标签对应的位置为1,其余都为0。在这种情况下,预测结果的标签也是从0开始的。

这篇关于Tensorflow2 中对模型进行编译,不同loss函数的选择下输入数据格式需求变化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/216030

相关文章

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

python安装完成后可以进行的后续步骤和注意事项小结

《python安装完成后可以进行的后续步骤和注意事项小结》本文详细介绍了安装Python3后的后续步骤,包括验证安装、配置环境、安装包、创建和运行脚本,以及使用虚拟环境,还强调了注意事项,如系统更新、... 目录验证安装配置环境(可选)安装python包创建和运行Python脚本虚拟环境(可选)注意事项安装