数据增强:拼接四张小图成为一张大图,同时合并标注信息

本文主要是介绍数据增强:拼接四张小图成为一张大图,同时合并标注信息,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

0. 背景:

1. 数据准备

2. 合并思路

3. 拼接前后示例

4. 完整代码


0. 背景:

在收集数据时,有时候我们会获取一批尺寸相对较小的图片,其尺寸之小甚至小于我们网络设定的输入尺寸;这时候,如果将多个小图拼接一下,就可以让避免在预处理时无意义的缩放,同时,可以让每个batch中的图片包含更多语义信息,类似于mosaic数据增强。

因此,我决定写个脚本,将这批小图进行每组四张进行组合拼接,并合并每个小图已有的标注信息,避免合并大图重新标注。

1. 数据准备

首先需要使用labelImg工具将小图标注完毕,并将图片、xml文件存放到同一个文件夹下(PS:你可以按照自己的标注格式以及存放习惯,只需要改动代码中的图片、标注文件的读取路径即可)。形如:

2. 合并思路

  • 拼接方式选用对角拼接,也即:四张小图各选一个顶点相接,如img1的右下角、img2的左下角、img3的右上角、img4的左上角;
  • 随机选定四张小图,用于对角拼接;
  • 获取每个小图的标注信息;
  • 根据四张小图的尺寸,确定出合并后大图的尺寸及拼接中心点;
  • 新建一个空的大图,将各个小图填充进去;
  • 保存大图到指定路径;
  • 修改每个小图中的标注信息,使之适配大图坐标;
  • 合并所有小图的标注信息,形成一个统一的Ground Truth;
  • 将统一的GTs写入一个新的xml文件当中,对应所保存的大图;

3. 拼接前后示例

用于拼接的四张小图:

拼接后的大图如下,同时,每个小图的标注信息也会同步到大图当中:

 

4. 完整代码

"""
Joint small images to be a big image.
"""
import os
import argparse
from PIL import Image
import numpy as np
import xml.etree.ElementTree as ETfrom bboxes2xml import bboxes2xmldef list_dir(path, list_name, suffix='xml'):  # 传入存储的listfor file in os.listdir(path):file_path = os.path.join(path, file)if os.path.isdir(file_path):list_dir(file_path, list_name)else:if file_path.split('.')[-1] == suffix:file_path = file_path.replace('\\', '/')list_name.append(file_path)def get_bboxes(xml_path):tree = ET.parse(open(xml_path, 'rb'))root = tree.getroot()bboxes, cls = [], []for obj in root.iter('object'):obj_cls = obj.find('name').textxmlbox = obj.find('bndbox')xmin = float(xmlbox.find('xmin').text)xmax = float(xmlbox.find('xmax').text)ymin = float(xmlbox.find('ymin').text)ymax = float(xmlbox.find('ymax').text)bboxes.append([xmin, ymin, xmax, ymax])cls.append(obj_cls)bboxes = np.asarray(bboxes, np.int)return bboxes, clsdef main(args):os.makedirs(args.new_data_path, exist_ok=True)imgs = []list_dir(args.raw_data_path, imgs, suffix='jpg')def img_save_name(i, zfill=5):file = args.filename+"_{}.jpg".format(str(i).zfill(zfill))return os.path.join(args.new_data_path, file)for i in range(len(imgs)):# 随机选四张图片, 用于对角拼接img_joint = np.random.choice(imgs, 4, replace=False)img1 = Image.open(img_joint[0])img2 = Image.open(img_joint[1])img3 = Image.open(img_joint[2])img4 = Image.open(img_joint[3])bboxes1, cls1 = get_bboxes(img_joint[0].replace('.jpg', '.xml'))bboxes2, cls2 = get_bboxes(img_joint[1].replace('.jpg', '.xml'))bboxes3, cls3 = get_bboxes(img_joint[2].replace('.jpg', '.xml'))bboxes4, cls4 = get_bboxes(img_joint[3].replace('.jpg', '.xml'))# 大图宽高,及拼接中心点W = max(img1.size[0], img3.size[0]) + max(img2.size[0], img4.size[0])H = max(img1.size[1], img2.size[1]) + max(img3.size[1], img4.size[1])P = [0, 0]P[0] = max(img1.size[0], img3.size[0])P[1] = max(img1.size[1], img2.size[1])# 新建大图,并使用小图填充img_big = Image.new('RGB', (W, H))img_big.paste(img1, (P[0]-img1.size[0], P[1]-img1.size[1]))img_big.paste(img2, (P[0], P[1]-img2.size[1]))img_big.paste(img3, (P[0]-img3.size[0], P[1]))img_big.paste(img4, (P[0], P[1]))img_big.save(img_save_name(i))# 修改每个小图的Bbox,并合并所有子图的bbox和clsbbox_list = []if len(bboxes1) !=0:bboxes1[:, 0], bboxes1[:, 2] = bboxes1[:, 0]+P[0]-img1.size[0], bboxes1[:, 2]+P[0]-img1.size[0]bboxes1[:, 1], bboxes1[:, 3] = bboxes1[:, 1]+P[1]-img1.size[1], bboxes1[:, 3]+P[1]-img1.size[1]bbox_list.append(bboxes1)if len(bboxes2) != 0:bboxes2[:, 0], bboxes2[:, 2] = bboxes2[:, 0]+P[0], bboxes2[:, 2]+P[0]bboxes2[:, 1], bboxes2[:, 3] = bboxes2[:, 1]+P[1]-img2.size[1], bboxes2[:, 3]+P[1]-img2.size[1]bbox_list.append(bboxes2)if len(bboxes3) != 0:bboxes3[:, 0], bboxes3[:, 2] = bboxes3[:, 0]+P[0]-img3.size[0], bboxes3[:, 2]+P[0]-img3.size[0]bboxes3[:, 1], bboxes3[:, 3] = bboxes3[:, 1]+P[1], bboxes3[:, 3]+P[1]bbox_list.append(bboxes3)if len(bboxes4) != 0:bboxes4[:, 0], bboxes4[:, 2] = bboxes4[:, 0]+P[0], bboxes4[:, 2]+P[0]bboxes4[:, 1], bboxes4[:, 3] = bboxes4[:, 1]+P[1], bboxes4[:, 3]+P[1]bbox_list.append(bboxes4)if len(bbox_list) != 0:bboxes = np.vstack(tuple(bbox_list))cls = cls1 + cls2 + cls3 + cls4gts = [[c] + b.tolist() for c, b in zip(cls, bboxes)]bboxes2xml(folder=args.new_data_path.split('/')[-1],img_name=img_save_name(i).replace('\\', '/').split('/')[-1].replace('.jpg', ''),width=W, height=H,gts=gts, xml_save_to=args.new_data_path)def parse_args():parser = argparse.ArgumentParser()parser.add_argument("--raw_data_path", default="raw_data_path", type=str,help="raw dataset files")parser.add_argument("--new_data_path", default="new_data_path", type=str,help="generated new dataset files")parser.add_argument("--filename", default="your_filename", type=str, help="save name")return parser.parse_args()if __name__ == '__main__':args = parse_args()main(args)

其中,bboxes2xml方法定义在bboxes2xml.py文件中:

# bboxes2xml.py filedef bboxes2xml(folder, img_name, width, height, gts, xml_save_to):""" Generate VOC type annotations from prediction resultsArgs:img_name: raw image name without suffix;width, height: size of img;xml_save_to: path of xml will save to;gts: Ground True, [[label, xmin, ymin, xmax, ymax],...,[...]];"""# write in xml filexml_file = open((xml_save_to + '/' + img_name + '.xml'), 'w')xml_file.write('<annotation>\n')xml_file.write('    <folder>' + folder + '</folder>\n')xml_file.write('    <filename>' + str(img_name) + '.jpg' + '</filename>\n')xml_file.write('    <size>\n')xml_file.write('        <width>' + str(width) + '</width>\n')xml_file.write('        <height>' + str(height) + '</height>\n')xml_file.write('        <depth>3</depth>\n')xml_file.write('    </size>\n')# write the region of image on xml filefor gt in gts:xml_file.write('    <object>\n')xml_file.write('        <name>' + str(gt[0]) + '</name>\n')xml_file.write('        <pose>Unspecified</pose>\n')xml_file.write('        <truncated>0</truncated>\n')xml_file.write('        <difficult>0</difficult>\n')xml_file.write('        <bndbox>\n')xml_file.write('            <xmin>' + str(gt[1]) + '</xmin>\n')xml_file.write('            <ymin>' + str(gt[2]) + '</ymin>\n')xml_file.write('            <xmax>' + str(gt[3]) + '</xmax>\n')xml_file.write('            <ymax>' + str(gt[4]) + '</ymax>\n')xml_file.write('        </bndbox>\n')xml_file.write('    </object>\n')xml_file.write('</annotation>')xml_file.close()

 

这篇关于数据增强:拼接四张小图成为一张大图,同时合并标注信息的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/215034

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

使用JavaScript将PDF页面中的标注扁平化的操作指南

《使用JavaScript将PDF页面中的标注扁平化的操作指南》扁平化(flatten)操作可以将标注作为矢量图形包含在PDF页面的内容中,使其不可编辑,DynamsoftDocumentViewer... 目录使用Dynamsoft Document Viewer打开一个PDF文件并启用标注添加功能扁平化

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)