HBase海量数据入仓实战

2023-10-14 22:30

本文主要是介绍HBase海量数据入仓实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、方案背景

现阶段部分业务数据存储在HBase中,这部分数据体量较大,达到数十亿。大数据需要增量同步这部分业务数据到数据仓库中,进行离线分析,目前主要的同步方式是通过HBase的hive映射表来实现的。该种方式具有以下痛点:

  • 需要对HBase表进行全表扫描,对HBase库有一定压力,同步数据同步速度慢。

  • 业务方对HBase表字段变更之后,需要重建hive映射表,给权限维护带来一定的困难。

  • 业务方对HBase表字段的变更无法得到有效监控,无法及时感知字段的新增,对数仓的维护带来一定的困难。

  • 业务方更新数据时未更新时间戳,导致通过时间戳字段增量抽取时数据缺失。

  • 业务方对表字段的更新新增无法及时感知,导致字段不全需要回溯数据。

基于以上背景,对HBase数据增量同步到数仓的场景,给出了通用的解决方案,解决了以上这些痛点。

二、方案简述

2.1 数据入仓构建流程

2.2 HBase数据入仓方案实验对比

分别对以上三种实现方案进行合理性分析。

2.2.1 方案一

使用HBase的hive映射表。此种方案实现方式简单,但是不符合数仓的实现机制,主要原因有:

  • HBase表虽然是Hadoop生态体系的NoSQL数据库,但是其作为业务方的数据库,直接通过hive映射表读取,就类比于直接读取业务方Mysql中的视图,可能会对业务方数据库造成一定压力,甚至会影响业务的正常运行,违反数仓尽可能低的影响业务运行原则。

  • 通过hive映射表的方式,从实现方式上来讲,增加了与业务方的耦合度,违反数仓建设解耦原则。

所以此种方案在此实际应用场景中,是不应该采取的方案。

2.2.2 方案二

根据业务表中的时间戳字段,抓取增量数据。由于HBase是基于rowKey的NoSQL数据库,所以会存在以下几个问题:

  • 需要通过Scan全表,然后根据时间戳(updateTime)过滤出当天的增量,当数据量达到千万甚至亿级时,这种执行效率就很低,运行时长很长。

  • 由于HBase表更新数据时,不像MySQL一样,能自动更新时间戳,会导致业务方没有及时更新时间戳,那么在增量抽取数据的时候,会造成数据缺失的情况。

所以此种方案存在一定的风险。

2.2.3 方案三

根据HBase的timeRange特性(HBase写入数据的时候会记录时间戳,使用的是服务器时间),首先过滤出增量的rowKey,然后根据这些rowKey去HBase查询对应的数据。这种实现方案同时解决了方案一、方案二的问题。同时,能够有效监控业务方对HBase表字段的新增情况,避免业务方未及时通知而导致的数据缺失问题,能够最大限度的减少数据回溯的频率。

综上,采用方案三作为实现HBase海量数据入仓的解决方案。

2.3 方案选择及实现原理

基于HBase数据写入时会更新TimeRange的特性,scan的时候如果指定TimeRange,那么就不需要扫描全表,直接根据TimeRange获取到对应的rowKey,然后再根据rowKey去get出增量信息,能够实现快速高效的获取增量数据。

为什么scan之后还要再去get呢?主要是因为通过timeRanme出来的数据,只包含这个时间范围内更新的列,而无法查询到这个rowkey对应的所有字段。比如一个rowkey有name,age两个字段,在指定时间范围内只更新了age字段,那么在scan的时候,只能查询出age字段,而无法查询出name字段,所以要再get一次。同时,获取增量数据对应的columns,跟hive表的meta数据进行比对,对字段的变更进行及时预警,减少后续因少同步字段内容而导致全量初始化的情况发生。其实现的原理图如下:

三、效果对比

运行时间对比如下(单位:秒):

四、总结与展望

数据仓库的数据来源于各方业务系统,高效准确的将业务系统的数据同步到数仓,是数仓建设的根本。通过该解决方案,主要解决了数据同步过程中的几大痛点问题,能够较好的保证数据入仓的质量问题,为后续的数仓建设打下一个较好的基础。

另外,通过多次实验对比,及对各种方案的可行性分析,将数据同步方案同步给一站式大数据开发平台,推动大数据开发平台支持基于timeRange的增量同步功能,实现此功能的平台化、配置化,解决了HBase海量数据入仓的痛点。

同时,除了以上这几种解决方案之外,还可以尝试结合Phoenix使用二级索引,然后通过查询Phoenix表的方式同步到数仓,这个将在后期进行性能测试。

这篇关于HBase海量数据入仓实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/213576

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount