python基于卷积神经网络实现自定义数据集训练与测试,岩心识别举例。

本文主要是介绍python基于卷积神经网络实现自定义数据集训练与测试,岩心识别举例。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

样本集取自本人在大创项目中用到的360张岩心照片。由于识别岩心是最基本的地质学工作,但这个过程往往是冗杂的,需要耗费大量时间与精力。如果用机器来划分岩心类型则会大大削减工作量!

注意:

       如何更改图像尺寸在这篇文章中,修改完之后你就可以把你自己的数据集应用到网络如果你的训练集与测试集也分别为30和5,并且样本类别也为3类,那么你只需要更改图像标签文件地址以及标签内容(如下面两图所示)。 图片名-标签文件如何生成请看这篇文章。

如果你想扩大数据集量,那么你只需要更改对应的文件内标签长度以及数据集图像量。

cc067da426844f4daba900398c3a7607.png

7b174c638eab4005a6e178bfbe92987e.png

我已经扩大了数据集的数量,展示在正文2。

正文1:

下面叙述中0指代Anhydrite_rock(膏岩),1指代Limestone(灰岩),2指代Gray Anhydrite_rock(灰质膏岩)。

原本自定义训练集与测试集是这样的:

训练集x_train: 

e4f8c95e90e148a4b92f7ce7681261b0.png

标签是这样的y_train:

ceedcdc8c80140949916e2d0443b644f.png

 测试集x_test:

f5a00e255d3144c3ba19528506ce75ed.png

标签是这样的y_test:

d8427b49811c4e6ab2a538713e2dcc00.png

但是由于图片像素为3456*5184,电脑内存不足,所以只能统一修i该为下面(256*256): 

训练集: 

897bcfe9a3c8454880d714b96642f6a8.png

  测试集:

87fc942bb5ea4fa88fef393e867484e9.png

两个数据集的标签没有更改。

#导入库
import os
import cv2
import torch
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from torchvision.io import read_image
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision import transforms
import tensorflow.keras as ka
import datetime
import tensorflow as tf
import os
import PySide2
from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPooling2D,Dropout,Flatten,Dense
from tensorflow.keras import Model
import tensorflow as tf'''加载数据集'''
#创建自定义数据集类,参考可见:http://t.csdn.cn/gkVNC
class Custom_Dataset(Dataset):#函数,设置图像集路径索引、图像标签文件读取def __init__(self, img_dir, img_label_dir, transform=None):super().__init__()self.img_dir = img_dirself.img_labels = pd.read_csv(img_label_dir)self.transform = transform#函数,设置数据集长度def __len__(self):return len(self.img_labels)#函数,设置指定图像读取、指定图像标签索引def __getitem__(self, index):#'所在文件路径+指定图像名'img_path = os.path.join(self.img_dir + self.img_labels.iloc[index, 1])#读指定图像#image = cv2.imdecode(np.fromfile(img_path,dtype=np.uint8),-1)image=plt.imread(img_path)#height,width = image.shape[0],image.shape[1]  #获取原图像的垂直方向尺寸和水平方向尺寸。#image = image.resize((height//4,width//4))#'指定图像标签'label = self.img_labels.iloc[index, 0]return image, label'''画图函数'''
def tensorToimg(img_tensor):img=img_tensorplt.imshow(img)#python3.X必须加下行plt.show()#标签指示含义
label_dic = {0: '膏岩', 1: '灰岩', 2: '灰质膏岩'}
'''图像集及标签路径'''
label_path = "C:/Users/yeahamen/AppData/Local/Programs/Python/Python310/train_label.csv"
img_root_path = "C:/Users/yeahamen/Desktop/custom_dataset/train_revise/"
test_image_path="C:/Users/yeahamen/Desktop/custom_dataset/test_revise/"
test_label_path="C:/Users/yeahamen/AppData/Local/Programs/Python/Python310/test_label.csv"
#加载图像集与标签路径到函数
#实例化类
dataset = Custom_Dataset(img_root_path, label_path)
dataset_test = Custom_Dataset(test_image_path,test_label_path)'''查看指定图像(18)'''
#索引指定位置的图像及标签
image, label = dataset.__getitem__(18)
#展示图片及其形状(tensor)
print('单张图片(18)形状:',image.shape)
print('单张图片(18)标签:',label_dic[label])#批量输出
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
'''查看图像的形状'''
for imgs, labels in dataloader:print('一批训练为1张图片(随机)形状:',imgs.shape)#一批图像形状:torch.Size([5, 3456, 5184, 3])print('一批训练为1张图片(随机)标签:',labels)#标签:tensor([3, 2, 3, 3, 1])break#仅需要查看一批'''查看自定义数据集'''
showimages=[]
showlabels=[]
#把图片信息依次加载到列表
for imgs, labels in dataloader:c = torch.squeeze(imgs, 0)#减去一维数据形成图片固定三参数d = torch.squeeze(labels,0)showimages.append(c)showlabels.append(d)
#依次画出图片
def show_image(nrow, ncol, sharex, sharey):fig, axs = plt.subplots(nrow, ncol, sharex=sharex, sharey=sharey, figsize=(10, 10))for i in range(0,nrow):for j in range(0,ncol):axs[i,j].imshow(showimages[i*4+j])axs[i,j].set_title('Label={}'.format(showlabels[i*4+j]))plt.show()plt.tight_layout()
#给定参数
#show_image(2, 4, False, False)'''创建训练集与测试集'''
dataloader_train = DataLoader(dataset, batch_size=30, shuffle=True)
for imgs, labels in dataloader_train:x_train=imgsy_train=labels
print('训练集图像形状:',x_train.shape)
print('训练集标签形状:',y_train.shape)
dataloader_test = DataLoader(dataset_test, batch_size=5, shuffle=True)
for imgs, labels in dataloader_test:x_test=imgsy_test=labels
print('测试集图像形状:',x_test.shape)
print('测试集标签形状:',y_test.shape)'''将图像转变为网络可用的数据类型'''
x_train,x_test = tf.cast(x_train/255.0,tf.float32),tf.cast(x_test/255.0,tf.float32)
y_train,y_test = tf.cast(y_train,tf.int16),tf.cast(y_test,tf.int16)#参考:http://t.csdn.cn/eRQX2
print('注意:',x_train.shape)
'''归一化灰度值'''
x_train = x_train/255
x_test = x_test/255'''标签转为独热编码,注意:如果标签不是从0开始,独热编码会增加1位(即0)'''
y_train = ka.utils.to_categorical(y_train)
y_test = ka.utils.to_categorical(y_test)
print('独热后训练集标签形状:',y_train.shape)
print('独热后测试集标签形状:',y_test.shape)
#获取测试集特征数
num_classes = y_test.shape[1]'''CNN模型'''
#输入3456*5184*3
model = ka.Sequential([ka.layers.Conv2D(filters = 32,kernel_size=(5,5),input_shape=(256,256,3),data_format="channels_last",activation='relu'),#卷积3456*5184*32、卷积层;参量依次为:卷积核个数、卷积核尺寸、单个像素点尺寸、使用ReLu激活函数、解释可见:http://t.csdn.cn/6s3dzka.layers.MaxPooling2D(pool_size=(4,4),strides = None,padding='VALID'),#池化1—864*1296*32、最大池化层,池化核尺寸4*4、步长默认为4、无填充、解释可见:http://t.csdn.cn/sES2uka.layers.MaxPooling2D(pool_size=(2,2),strides = None,padding='VALID'),#池化2—432*648*32再加一个最大池化层,池化核尺寸为2*2、步长默认为2、无填充ka.layers.Dropout(0.2),#模型正则化防止过拟合, 只会在训练时才会起作用,随机设定输入的值x的某一维=0,这个概率为输入的百分之20,即丢掉1/5神经元不激活#在模型预测时,不生效,所有神经元均保留也就是不进行dropout。解释可见:http://t.csdn.cn/RXbmS、http://t.csdn.cn/zAIuJka.layers.Flatten(),#拉平432*648*32=8957952;拉平池化层为一个向量ka.layers.BatchNormalization(),#批标准化层,提高模型准确率ka.layers.Dense(10,activation='relu'),#全连接层1,10个神经元,激活函数为ReLuka.layers.Dense(num_classes,activation='softmax')])#全连接层2,3个神经元(对应标签0-2),激活函数为softmax,作用是把神经网络的输出转化为概率,参考可见:http://t.csdn.cn/bcWgu;http://t.csdn.cn/A1Jyn
'''模型参数展示、编译与训练'''				   
model.summary()
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
startdate = datetime.datetime.now()
#训练轮数epochs=n,即训练n轮
model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=100,batch_size=1,verbose=2)
#训练样本、训练标签、指定验证数据为测试集、训练轮数、显示每一轮训练进程,参考可见:http://t.csdn.cn/oE46K
#获取训练结束时间
enndate=datetime.datetime.now()
print("训练用时:"+str(enndate-startdate))

程序运行结果是这样的:

2afb7c8dff904ac7bf40f94cb25725cb.png

 显然由于样本过少,模型训练精度并不高,3轮训练达到0.4;如果有时间再进一步增加样本数量并完善。

正文2

由之前的30个训练集、5个测试集扩大到320个训练集,40个测试集:

训练集:

31cb04c1b8df4fd8baa7e7d86217d045.png

测试集 :

c043a123b1034369bdbcd01a0bd85b40.png

 修改后的代码如下,你可以与上面的代码进行对比,从而修改数据集量为适合你的大小!

#导入库
import os
import cv2
import torch
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from torchvision.io import read_image
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision import transforms
import tensorflow.keras as ka
import datetime
import tensorflow as tf
import os
import PySide2
from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPooling2D,Dropout,Flatten,Dense
from tensorflow.keras import Model
import tensorflow as tf'''加载数据集'''
#创建自定义数据集类,参考可见:http://t.csdn.cn/gkVNC
class Custom_Dataset(Dataset):#函数,设置图像集路径索引、图像标签文件读取def __init__(self, img_dir, img_label_dir, transform=None):super().__init__()self.img_dir = img_dirself.img_labels = pd.read_csv(img_label_dir)self.transform = transform#函数,设置数据集长度def __len__(self):return len(self.img_labels)#函数,设置指定图像读取、指定图像标签索引def __getitem__(self, index):#'所在文件路径+指定图像名'img_path = os.path.join(self.img_dir + self.img_labels.iloc[index, 1])#读指定图像#image = cv2.imdecode(np.fromfile(img_path,dtype=np.uint8),-1)image=plt.imread(img_path)#height,width = image.shape[0],image.shape[1]  #获取原图像的垂直方向尺寸和水平方向尺寸。#image = image.resize((height//4,width//4))#'指定图像标签'label = self.img_labels.iloc[index, 0]return image, label'''画图函数'''
def tensorToimg(img_tensor):img=img_tensorplt.imshow(img)#python3.X必须加下行plt.show()#标签指示含义
label_dic = {0: '膏岩', 1: '灰岩', 2: '灰质膏岩',3: '膏质灰岩'}
'''图像集及标签路径'''
label_path = "C:/Users/yeahamen/AppData/Local/Programs/Python/Python310/train_label.csv"
img_root_path = "C:/Users/yeahamen/Desktop/custom_dataset/train_revise/"
test_image_path="C:/Users/yeahamen/Desktop/custom_dataset/test_revise/"
test_label_path="C:/Users/yeahamen/AppData/Local/Programs/Python/Python310/test_label.csv"
#加载图像集与标签路径到函数
#实例化类
dataset = Custom_Dataset(img_root_path, label_path)
dataset_test = Custom_Dataset(test_image_path,test_label_path)'''查看指定图像(18)'''
#索引指定位置的图像及标签
image, label = dataset.__getitem__(18)
#展示图片及其形状(tensor)
print('单张图片(18)形状:',image.shape)
print('单张图片(18)标签:',label_dic[label])#批量输出
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
'''查看图像的形状'''
for imgs, labels in dataloader:print('一批训练为1张图片(随机)形状:',imgs.shape)#一批图像形状:torch.Size([5, 256, 256, 3])print('一批训练为1张图片(随机)标签:',labels)#标签:tensor([3, 2, 3, 3, 1])break#仅需要查看一批'''查看自定义数据集'''
showimages=[]
showlabels=[]
#把图片信息依次加载到列表
for imgs, labels in dataloader:c = torch.squeeze(imgs, 0)#减去一维数据形成图片固定三参数d = torch.squeeze(labels,0)showimages.append(c)showlabels.append(d)
#依次画出图片
def show_image(nrow, ncol, sharex, sharey):fig, axs = plt.subplots(nrow, ncol, sharex=sharex, sharey=sharey, figsize=(10, 10))for i in range(0,nrow):for j in range(0,ncol):axs[i,j].imshow(showimages[i*4+j])axs[i,j].set_title('Label={}'.format(showlabels[i*4+j]))plt.show()plt.tight_layout()
#给定参数
#show_image(2, 4, False, False)'''创建训练集与测试集'''
dataloader_train = DataLoader(dataset, batch_size=320, shuffle=True)
for imgs, labels in dataloader_train:x_train=imgsy_train=labels
print('训练集图像形状:',x_train.shape)
print('训练集标签形状:',y_train.shape)
dataloader_test = DataLoader(dataset_test, batch_size=40, shuffle=True)
for imgs, labels in dataloader_test:x_test=imgsy_test=labels
print('测试集图像形状:',x_test.shape)
print('测试集标签形状:',y_test.shape)'''将图像转变为网络可用的数据类型'''
X_test = x_test#这里保留是为了预测时查看原始图像
Y_test = y_test#这里保留是为了预测时查看原始标签
x_train,x_test = tf.cast(x_train/255.0,tf.float32),tf.cast(x_test/255.0,tf.float32)
y_train,y_test = tf.cast(y_train,tf.int16),tf.cast(y_test,tf.int16)#参考:http://t.csdn.cn/eRQX2
print('注意:',x_train.shape)
'''归一化灰度值'''
x_train = x_train/255
x_test = x_test/255'''标签转为独热编码,注意:如果标签不是从0开始,独热编码会增加1位(即0)'''
y_train = ka.utils.to_categorical(y_train)
y_test = ka.utils.to_categorical(y_test)
print('独热后训练集标签形状:',y_train.shape)
print('独热后测试集标签形状:',y_test.shape)
#获取测试集特征数
num_classes = y_test.shape[1]'''CNN模型'''
#输入256*256*3
model = ka.Sequential([ka.layers.Conv2D(filters = 32,kernel_size=(5,5),input_shape=(256,256,3),data_format="channels_last",activation='relu'),#卷积252*252*32、卷积层;参量依次为:卷积核个数、卷积核尺寸、单个像素点尺寸、使用ReLu激活函数、解释可见:http://t.csdn.cn/6s3dzka.layers.MaxPooling2D(pool_size=(4,4),strides = None,padding='VALID'),#池化1—63*63*32、最大池化层,池化核尺寸4*4、步长默认为4、无填充、解释可见:http://t.csdn.cn/sES2uka.layers.MaxPooling2D(pool_size=(2,2),strides = None,padding='VALID'),#池化2—31*31*32再加一个最大池化层,池化核尺寸为2*2、步长默认为2、无填充ka.layers.Dropout(0.2),#模型正则化防止过拟合, 只会在训练时才会起作用,随机设定输入的值x的某一维=0,这个概率为输入的百分之20,即丢掉1/5神经元不激活#在模型预测时,不生效,所有神经元均保留也就是不进行dropout。解释可见:http://t.csdn.cn/RXbmS、http://t.csdn.cn/zAIuJka.layers.Flatten(),#拉平432*648*32=8957952;拉平池化层为一个向量ka.layers.BatchNormalization(),#批标准化层,提高模型准确率ka.layers.Dense(50,activation='relu'),#全连接层1,10个神经元,激活函数为ReLuka.layers.Dense(num_classes,activation='softmax')])#全连接层2,4个神经元(对应标签0-3),激活函数为softmax,作用是把神经网络的输出转化为概率,参考可见:http://t.csdn.cn/bcWgu;http://t.csdn.cn/A1Jyn
'''模型参数展示、编译与训练'''				   
model.summary()
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
startdate = datetime.datetime.now()
#训练轮数epochs=n,即训练n轮
history = model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=40,batch_size=5,verbose=2)
#训练样本、训练标签、指定验证数据为测试集、训练轮数、显示每一轮训练进程,参考可见:http://t.csdn.cn/oE46K
#获取训练结束时间
enndate=datetime.datetime.now()
print("训练用时:"+str(enndate-startdate))#模型损失值与精度画图展示
#参考http://t.csdn.cn/fUdtO
print(history.history)
loss = history.history['loss']          #训练集损失
val_loss = history.history['val_loss']  #测试集损失
acc = history.history['accuracy']            #训练集准确率
val_acc = history.history['val_accuracy']    #测试集准确率plt.figure(figsize=(10,3))
plt.subplot(121)
plt.plot(loss,color='b',label='train')
plt.plot(val_loss,color='r',label='test')
plt.ylabel('Loss')
plt.legend()plt.subplot(122)
plt.plot(acc,color='b',label='train')
plt.plot(val_acc,color='r',label='test')
plt.ylabel('Accuracy')
plt.legend()
plt.show()plt.figure(2)
'''使用模型进行预测'''
for i in range(10):#在测试集中随机选10个random_test = np.random.randint(1,40)plt.subplot(2,5,i+1)plt.axis('off')#去掉坐标轴plt.imshow(X_test[random_test])#展示要预测的图片predict_image = tf.reshape(x_test[random_test],(1,256,256,3))y_label_predict = np.argmax(model.predict(predict_image))#使用模型进行预测plt.title('R_value:'+str(Y_test[random_test])+'\nP_value:'+str(y_label_predict))#图名显示预测值与实际标签值进行对比
plt.show()

在这里我展示无论训练几轮都会有的输出面板:

a2bbd09130e24986b23e2991e6337082.png

下面展示训练5轮、10轮、20轮、40轮的结果。 

训练5轮结果:

65354c952bf440a1b6810ea83f0b109d.png

 b95a764c1323404285be107f1f72f00b.png

 b8811ed471fe4e0f80c60296ddd09ecd.png

训练10轮结果:

 bdc815236bdc4712a571bde59f4c1a46.png

722900bfaf10455b82014b99a8697c33.png

 42aad1e572cb458d949918880eee1910.png

 训练20轮结果:

 0cb7c7a5d8344bd9b405d3e193b8d8c1.png

 d6326a8b0abb46a4b6625af9a3cb6690.png

 a14138a6a5874b719ebf691a333d7db2.png

  训练40轮结果:

bc6b7ea1106b48569ca3b9fae62e1710.png

471470e25eb745bfa76c9a4e3bb1d127.png

 6e0497bd0a484d5a90a41ae3692e99ff.png

b5ffec7d3aaf41f99e24fe5d117ee59b.png 识别精度的提升是显而易见的!

 最后放上整个实践过程用到的模块:

import os

import cv2

import torch

import pylab

import PySide2

import datetime

import numpy as np

import pandas as pd

from PIL import Image

import tensorflow as tf

import tensorflow.keras as ka

from torchvision import models

import matplotlib.pyplot as plt

from tensorflow.keras import Model

from torchvision import transforms

from torch.utils.data import Dataset

from torchvision.io import read_image

from torch.utils.data import DataLoader

import tensorflow.keras.applications.vgg19 as vgg19

import tensorflow.keras.preprocessing.image as imagepre

from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPooling2D,Dropout,Flatten,Dense

这篇关于python基于卷积神经网络实现自定义数据集训练与测试,岩心识别举例。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/201816

相关文章

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P