python基于卷积神经网络实现自定义数据集训练与测试,岩心识别举例。

本文主要是介绍python基于卷积神经网络实现自定义数据集训练与测试,岩心识别举例。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

样本集取自本人在大创项目中用到的360张岩心照片。由于识别岩心是最基本的地质学工作,但这个过程往往是冗杂的,需要耗费大量时间与精力。如果用机器来划分岩心类型则会大大削减工作量!

注意:

       如何更改图像尺寸在这篇文章中,修改完之后你就可以把你自己的数据集应用到网络如果你的训练集与测试集也分别为30和5,并且样本类别也为3类,那么你只需要更改图像标签文件地址以及标签内容(如下面两图所示)。 图片名-标签文件如何生成请看这篇文章。

如果你想扩大数据集量,那么你只需要更改对应的文件内标签长度以及数据集图像量。

cc067da426844f4daba900398c3a7607.png

7b174c638eab4005a6e178bfbe92987e.png

我已经扩大了数据集的数量,展示在正文2。

正文1:

下面叙述中0指代Anhydrite_rock(膏岩),1指代Limestone(灰岩),2指代Gray Anhydrite_rock(灰质膏岩)。

原本自定义训练集与测试集是这样的:

训练集x_train: 

e4f8c95e90e148a4b92f7ce7681261b0.png

标签是这样的y_train:

ceedcdc8c80140949916e2d0443b644f.png

 测试集x_test:

f5a00e255d3144c3ba19528506ce75ed.png

标签是这样的y_test:

d8427b49811c4e6ab2a538713e2dcc00.png

但是由于图片像素为3456*5184,电脑内存不足,所以只能统一修i该为下面(256*256): 

训练集: 

897bcfe9a3c8454880d714b96642f6a8.png

  测试集:

87fc942bb5ea4fa88fef393e867484e9.png

两个数据集的标签没有更改。

#导入库
import os
import cv2
import torch
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from torchvision.io import read_image
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision import transforms
import tensorflow.keras as ka
import datetime
import tensorflow as tf
import os
import PySide2
from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPooling2D,Dropout,Flatten,Dense
from tensorflow.keras import Model
import tensorflow as tf'''加载数据集'''
#创建自定义数据集类,参考可见:http://t.csdn.cn/gkVNC
class Custom_Dataset(Dataset):#函数,设置图像集路径索引、图像标签文件读取def __init__(self, img_dir, img_label_dir, transform=None):super().__init__()self.img_dir = img_dirself.img_labels = pd.read_csv(img_label_dir)self.transform = transform#函数,设置数据集长度def __len__(self):return len(self.img_labels)#函数,设置指定图像读取、指定图像标签索引def __getitem__(self, index):#'所在文件路径+指定图像名'img_path = os.path.join(self.img_dir + self.img_labels.iloc[index, 1])#读指定图像#image = cv2.imdecode(np.fromfile(img_path,dtype=np.uint8),-1)image=plt.imread(img_path)#height,width = image.shape[0],image.shape[1]  #获取原图像的垂直方向尺寸和水平方向尺寸。#image = image.resize((height//4,width//4))#'指定图像标签'label = self.img_labels.iloc[index, 0]return image, label'''画图函数'''
def tensorToimg(img_tensor):img=img_tensorplt.imshow(img)#python3.X必须加下行plt.show()#标签指示含义
label_dic = {0: '膏岩', 1: '灰岩', 2: '灰质膏岩'}
'''图像集及标签路径'''
label_path = "C:/Users/yeahamen/AppData/Local/Programs/Python/Python310/train_label.csv"
img_root_path = "C:/Users/yeahamen/Desktop/custom_dataset/train_revise/"
test_image_path="C:/Users/yeahamen/Desktop/custom_dataset/test_revise/"
test_label_path="C:/Users/yeahamen/AppData/Local/Programs/Python/Python310/test_label.csv"
#加载图像集与标签路径到函数
#实例化类
dataset = Custom_Dataset(img_root_path, label_path)
dataset_test = Custom_Dataset(test_image_path,test_label_path)'''查看指定图像(18)'''
#索引指定位置的图像及标签
image, label = dataset.__getitem__(18)
#展示图片及其形状(tensor)
print('单张图片(18)形状:',image.shape)
print('单张图片(18)标签:',label_dic[label])#批量输出
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
'''查看图像的形状'''
for imgs, labels in dataloader:print('一批训练为1张图片(随机)形状:',imgs.shape)#一批图像形状:torch.Size([5, 3456, 5184, 3])print('一批训练为1张图片(随机)标签:',labels)#标签:tensor([3, 2, 3, 3, 1])break#仅需要查看一批'''查看自定义数据集'''
showimages=[]
showlabels=[]
#把图片信息依次加载到列表
for imgs, labels in dataloader:c = torch.squeeze(imgs, 0)#减去一维数据形成图片固定三参数d = torch.squeeze(labels,0)showimages.append(c)showlabels.append(d)
#依次画出图片
def show_image(nrow, ncol, sharex, sharey):fig, axs = plt.subplots(nrow, ncol, sharex=sharex, sharey=sharey, figsize=(10, 10))for i in range(0,nrow):for j in range(0,ncol):axs[i,j].imshow(showimages[i*4+j])axs[i,j].set_title('Label={}'.format(showlabels[i*4+j]))plt.show()plt.tight_layout()
#给定参数
#show_image(2, 4, False, False)'''创建训练集与测试集'''
dataloader_train = DataLoader(dataset, batch_size=30, shuffle=True)
for imgs, labels in dataloader_train:x_train=imgsy_train=labels
print('训练集图像形状:',x_train.shape)
print('训练集标签形状:',y_train.shape)
dataloader_test = DataLoader(dataset_test, batch_size=5, shuffle=True)
for imgs, labels in dataloader_test:x_test=imgsy_test=labels
print('测试集图像形状:',x_test.shape)
print('测试集标签形状:',y_test.shape)'''将图像转变为网络可用的数据类型'''
x_train,x_test = tf.cast(x_train/255.0,tf.float32),tf.cast(x_test/255.0,tf.float32)
y_train,y_test = tf.cast(y_train,tf.int16),tf.cast(y_test,tf.int16)#参考:http://t.csdn.cn/eRQX2
print('注意:',x_train.shape)
'''归一化灰度值'''
x_train = x_train/255
x_test = x_test/255'''标签转为独热编码,注意:如果标签不是从0开始,独热编码会增加1位(即0)'''
y_train = ka.utils.to_categorical(y_train)
y_test = ka.utils.to_categorical(y_test)
print('独热后训练集标签形状:',y_train.shape)
print('独热后测试集标签形状:',y_test.shape)
#获取测试集特征数
num_classes = y_test.shape[1]'''CNN模型'''
#输入3456*5184*3
model = ka.Sequential([ka.layers.Conv2D(filters = 32,kernel_size=(5,5),input_shape=(256,256,3),data_format="channels_last",activation='relu'),#卷积3456*5184*32、卷积层;参量依次为:卷积核个数、卷积核尺寸、单个像素点尺寸、使用ReLu激活函数、解释可见:http://t.csdn.cn/6s3dzka.layers.MaxPooling2D(pool_size=(4,4),strides = None,padding='VALID'),#池化1—864*1296*32、最大池化层,池化核尺寸4*4、步长默认为4、无填充、解释可见:http://t.csdn.cn/sES2uka.layers.MaxPooling2D(pool_size=(2,2),strides = None,padding='VALID'),#池化2—432*648*32再加一个最大池化层,池化核尺寸为2*2、步长默认为2、无填充ka.layers.Dropout(0.2),#模型正则化防止过拟合, 只会在训练时才会起作用,随机设定输入的值x的某一维=0,这个概率为输入的百分之20,即丢掉1/5神经元不激活#在模型预测时,不生效,所有神经元均保留也就是不进行dropout。解释可见:http://t.csdn.cn/RXbmS、http://t.csdn.cn/zAIuJka.layers.Flatten(),#拉平432*648*32=8957952;拉平池化层为一个向量ka.layers.BatchNormalization(),#批标准化层,提高模型准确率ka.layers.Dense(10,activation='relu'),#全连接层1,10个神经元,激活函数为ReLuka.layers.Dense(num_classes,activation='softmax')])#全连接层2,3个神经元(对应标签0-2),激活函数为softmax,作用是把神经网络的输出转化为概率,参考可见:http://t.csdn.cn/bcWgu;http://t.csdn.cn/A1Jyn
'''模型参数展示、编译与训练'''				   
model.summary()
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
startdate = datetime.datetime.now()
#训练轮数epochs=n,即训练n轮
model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=100,batch_size=1,verbose=2)
#训练样本、训练标签、指定验证数据为测试集、训练轮数、显示每一轮训练进程,参考可见:http://t.csdn.cn/oE46K
#获取训练结束时间
enndate=datetime.datetime.now()
print("训练用时:"+str(enndate-startdate))

程序运行结果是这样的:

2afb7c8dff904ac7bf40f94cb25725cb.png

 显然由于样本过少,模型训练精度并不高,3轮训练达到0.4;如果有时间再进一步增加样本数量并完善。

正文2

由之前的30个训练集、5个测试集扩大到320个训练集,40个测试集:

训练集:

31cb04c1b8df4fd8baa7e7d86217d045.png

测试集 :

c043a123b1034369bdbcd01a0bd85b40.png

 修改后的代码如下,你可以与上面的代码进行对比,从而修改数据集量为适合你的大小!

#导入库
import os
import cv2
import torch
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from torchvision.io import read_image
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision import transforms
import tensorflow.keras as ka
import datetime
import tensorflow as tf
import os
import PySide2
from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPooling2D,Dropout,Flatten,Dense
from tensorflow.keras import Model
import tensorflow as tf'''加载数据集'''
#创建自定义数据集类,参考可见:http://t.csdn.cn/gkVNC
class Custom_Dataset(Dataset):#函数,设置图像集路径索引、图像标签文件读取def __init__(self, img_dir, img_label_dir, transform=None):super().__init__()self.img_dir = img_dirself.img_labels = pd.read_csv(img_label_dir)self.transform = transform#函数,设置数据集长度def __len__(self):return len(self.img_labels)#函数,设置指定图像读取、指定图像标签索引def __getitem__(self, index):#'所在文件路径+指定图像名'img_path = os.path.join(self.img_dir + self.img_labels.iloc[index, 1])#读指定图像#image = cv2.imdecode(np.fromfile(img_path,dtype=np.uint8),-1)image=plt.imread(img_path)#height,width = image.shape[0],image.shape[1]  #获取原图像的垂直方向尺寸和水平方向尺寸。#image = image.resize((height//4,width//4))#'指定图像标签'label = self.img_labels.iloc[index, 0]return image, label'''画图函数'''
def tensorToimg(img_tensor):img=img_tensorplt.imshow(img)#python3.X必须加下行plt.show()#标签指示含义
label_dic = {0: '膏岩', 1: '灰岩', 2: '灰质膏岩',3: '膏质灰岩'}
'''图像集及标签路径'''
label_path = "C:/Users/yeahamen/AppData/Local/Programs/Python/Python310/train_label.csv"
img_root_path = "C:/Users/yeahamen/Desktop/custom_dataset/train_revise/"
test_image_path="C:/Users/yeahamen/Desktop/custom_dataset/test_revise/"
test_label_path="C:/Users/yeahamen/AppData/Local/Programs/Python/Python310/test_label.csv"
#加载图像集与标签路径到函数
#实例化类
dataset = Custom_Dataset(img_root_path, label_path)
dataset_test = Custom_Dataset(test_image_path,test_label_path)'''查看指定图像(18)'''
#索引指定位置的图像及标签
image, label = dataset.__getitem__(18)
#展示图片及其形状(tensor)
print('单张图片(18)形状:',image.shape)
print('单张图片(18)标签:',label_dic[label])#批量输出
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
'''查看图像的形状'''
for imgs, labels in dataloader:print('一批训练为1张图片(随机)形状:',imgs.shape)#一批图像形状:torch.Size([5, 256, 256, 3])print('一批训练为1张图片(随机)标签:',labels)#标签:tensor([3, 2, 3, 3, 1])break#仅需要查看一批'''查看自定义数据集'''
showimages=[]
showlabels=[]
#把图片信息依次加载到列表
for imgs, labels in dataloader:c = torch.squeeze(imgs, 0)#减去一维数据形成图片固定三参数d = torch.squeeze(labels,0)showimages.append(c)showlabels.append(d)
#依次画出图片
def show_image(nrow, ncol, sharex, sharey):fig, axs = plt.subplots(nrow, ncol, sharex=sharex, sharey=sharey, figsize=(10, 10))for i in range(0,nrow):for j in range(0,ncol):axs[i,j].imshow(showimages[i*4+j])axs[i,j].set_title('Label={}'.format(showlabels[i*4+j]))plt.show()plt.tight_layout()
#给定参数
#show_image(2, 4, False, False)'''创建训练集与测试集'''
dataloader_train = DataLoader(dataset, batch_size=320, shuffle=True)
for imgs, labels in dataloader_train:x_train=imgsy_train=labels
print('训练集图像形状:',x_train.shape)
print('训练集标签形状:',y_train.shape)
dataloader_test = DataLoader(dataset_test, batch_size=40, shuffle=True)
for imgs, labels in dataloader_test:x_test=imgsy_test=labels
print('测试集图像形状:',x_test.shape)
print('测试集标签形状:',y_test.shape)'''将图像转变为网络可用的数据类型'''
X_test = x_test#这里保留是为了预测时查看原始图像
Y_test = y_test#这里保留是为了预测时查看原始标签
x_train,x_test = tf.cast(x_train/255.0,tf.float32),tf.cast(x_test/255.0,tf.float32)
y_train,y_test = tf.cast(y_train,tf.int16),tf.cast(y_test,tf.int16)#参考:http://t.csdn.cn/eRQX2
print('注意:',x_train.shape)
'''归一化灰度值'''
x_train = x_train/255
x_test = x_test/255'''标签转为独热编码,注意:如果标签不是从0开始,独热编码会增加1位(即0)'''
y_train = ka.utils.to_categorical(y_train)
y_test = ka.utils.to_categorical(y_test)
print('独热后训练集标签形状:',y_train.shape)
print('独热后测试集标签形状:',y_test.shape)
#获取测试集特征数
num_classes = y_test.shape[1]'''CNN模型'''
#输入256*256*3
model = ka.Sequential([ka.layers.Conv2D(filters = 32,kernel_size=(5,5),input_shape=(256,256,3),data_format="channels_last",activation='relu'),#卷积252*252*32、卷积层;参量依次为:卷积核个数、卷积核尺寸、单个像素点尺寸、使用ReLu激活函数、解释可见:http://t.csdn.cn/6s3dzka.layers.MaxPooling2D(pool_size=(4,4),strides = None,padding='VALID'),#池化1—63*63*32、最大池化层,池化核尺寸4*4、步长默认为4、无填充、解释可见:http://t.csdn.cn/sES2uka.layers.MaxPooling2D(pool_size=(2,2),strides = None,padding='VALID'),#池化2—31*31*32再加一个最大池化层,池化核尺寸为2*2、步长默认为2、无填充ka.layers.Dropout(0.2),#模型正则化防止过拟合, 只会在训练时才会起作用,随机设定输入的值x的某一维=0,这个概率为输入的百分之20,即丢掉1/5神经元不激活#在模型预测时,不生效,所有神经元均保留也就是不进行dropout。解释可见:http://t.csdn.cn/RXbmS、http://t.csdn.cn/zAIuJka.layers.Flatten(),#拉平432*648*32=8957952;拉平池化层为一个向量ka.layers.BatchNormalization(),#批标准化层,提高模型准确率ka.layers.Dense(50,activation='relu'),#全连接层1,10个神经元,激活函数为ReLuka.layers.Dense(num_classes,activation='softmax')])#全连接层2,4个神经元(对应标签0-3),激活函数为softmax,作用是把神经网络的输出转化为概率,参考可见:http://t.csdn.cn/bcWgu;http://t.csdn.cn/A1Jyn
'''模型参数展示、编译与训练'''				   
model.summary()
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
startdate = datetime.datetime.now()
#训练轮数epochs=n,即训练n轮
history = model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=40,batch_size=5,verbose=2)
#训练样本、训练标签、指定验证数据为测试集、训练轮数、显示每一轮训练进程,参考可见:http://t.csdn.cn/oE46K
#获取训练结束时间
enndate=datetime.datetime.now()
print("训练用时:"+str(enndate-startdate))#模型损失值与精度画图展示
#参考http://t.csdn.cn/fUdtO
print(history.history)
loss = history.history['loss']          #训练集损失
val_loss = history.history['val_loss']  #测试集损失
acc = history.history['accuracy']            #训练集准确率
val_acc = history.history['val_accuracy']    #测试集准确率plt.figure(figsize=(10,3))
plt.subplot(121)
plt.plot(loss,color='b',label='train')
plt.plot(val_loss,color='r',label='test')
plt.ylabel('Loss')
plt.legend()plt.subplot(122)
plt.plot(acc,color='b',label='train')
plt.plot(val_acc,color='r',label='test')
plt.ylabel('Accuracy')
plt.legend()
plt.show()plt.figure(2)
'''使用模型进行预测'''
for i in range(10):#在测试集中随机选10个random_test = np.random.randint(1,40)plt.subplot(2,5,i+1)plt.axis('off')#去掉坐标轴plt.imshow(X_test[random_test])#展示要预测的图片predict_image = tf.reshape(x_test[random_test],(1,256,256,3))y_label_predict = np.argmax(model.predict(predict_image))#使用模型进行预测plt.title('R_value:'+str(Y_test[random_test])+'\nP_value:'+str(y_label_predict))#图名显示预测值与实际标签值进行对比
plt.show()

在这里我展示无论训练几轮都会有的输出面板:

a2bbd09130e24986b23e2991e6337082.png

下面展示训练5轮、10轮、20轮、40轮的结果。 

训练5轮结果:

65354c952bf440a1b6810ea83f0b109d.png

 b95a764c1323404285be107f1f72f00b.png

 b8811ed471fe4e0f80c60296ddd09ecd.png

训练10轮结果:

 bdc815236bdc4712a571bde59f4c1a46.png

722900bfaf10455b82014b99a8697c33.png

 42aad1e572cb458d949918880eee1910.png

 训练20轮结果:

 0cb7c7a5d8344bd9b405d3e193b8d8c1.png

 d6326a8b0abb46a4b6625af9a3cb6690.png

 a14138a6a5874b719ebf691a333d7db2.png

  训练40轮结果:

bc6b7ea1106b48569ca3b9fae62e1710.png

471470e25eb745bfa76c9a4e3bb1d127.png

 6e0497bd0a484d5a90a41ae3692e99ff.png

b5ffec7d3aaf41f99e24fe5d117ee59b.png 识别精度的提升是显而易见的!

 最后放上整个实践过程用到的模块:

import os

import cv2

import torch

import pylab

import PySide2

import datetime

import numpy as np

import pandas as pd

from PIL import Image

import tensorflow as tf

import tensorflow.keras as ka

from torchvision import models

import matplotlib.pyplot as plt

from tensorflow.keras import Model

from torchvision import transforms

from torch.utils.data import Dataset

from torchvision.io import read_image

from torch.utils.data import DataLoader

import tensorflow.keras.applications.vgg19 as vgg19

import tensorflow.keras.preprocessing.image as imagepre

from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPooling2D,Dropout,Flatten,Dense

这篇关于python基于卷积神经网络实现自定义数据集训练与测试,岩心识别举例。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/201816

相关文章

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo