智能优化算法改进-K-means聚类种群初始化附Matlab代码

本文主要是介绍智能优化算法改进-K-means聚类种群初始化附Matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 

0引言

一、K-means聚类原理

二、K-Means聚类算法步骤

三、K-Means聚类原理图​编辑

四、K-means聚类改进智能优化算法种群初始化效果图

4.1  初始种群数据图

​4.2  K-means聚类结果图

4.2.1  根据K-means聚类原理聚类

 4.2.2  根据MATLAB自带kmeans函数聚类

 五、K-means聚类改进智能优化算法种群初始化Matlab部分代码


 

0引言

       智能优化算法种群初始化的改进是改进中常用策略,比如说混沌种群初始化、佳点集、精英反向学习策略等等,根据阅读文献,K-means聚类可以改进智能优化算法种群初始化,如SASSA,它的策略为K-means聚类种群+正余弦算法改进加入者策略+自适应策略扰动。

一、K-means聚类原理

        K-Means算法是一种典型的基于划分的聚类算法,也是一种无监督学习算法。K-Means算法的思想很简单,对给定的样本集,用欧氏距离作为衡量数据对象间相似度的指标,相似度与数据对象间的距离成反比,相似度越大,距离越小。预先指定初始聚类数以及个初始聚类中心,按照样本之间的距离大小,把样本集划分为个簇根据数据对象与聚类中心之间的相似度,不断更新聚类中心的位置,不断降低类簇的误差平方和(Sum of Squared Error,SSE),当SSE不再变化或目标函数收敛时,聚类结束,得到最终结果。K-Means算法的核心思想:首先从数据集中随机选取k个初始聚类中心eq?C_%7Bi%7D%20%2C1%5Cleq%20i%5Cleq%20k,计算其余数据对象与与聚类中心eq?C_%7Bi%7D的欧氏距离,找出离目标数据对象最近的聚类中心eq?C_%7Bi%7D,并将数据对象分配到聚类中心eq?C_%7Bi%7D所对应的簇中。然后计算每个簇中数据对象的平均值作为新的聚类中心,进行下一次迭代,直到聚类中心不再变化或达到最大的迭代次数时停止。空间中数据对象与聚类中心间的欧氏距离计算公式为:

9ce50be33a7046fc8ed53fd594419b9d.png

其中,eq?X为数据对象;eq?C_%7Bi%7D为第i个聚类中心;eq?m为数据对象的维度;eq?X_%7Bj%7Deq?C_%7Bij%7Deq?Xeq?C_%7Bi%7D的第eq?j个属性值。

二、K-Means聚类算法步骤

       K-means算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。

K-mean算法步骤如下:

1)随机选取K个样本为中心

2)分别计算所有样本到随机选取的K个中⼼的距离

3)样本离哪个中⼼近就被分到哪个中⼼

4)计算各个中⼼样本的均值(最简单的⽅法就是求样本每个维度的平均值)作为新的中心

5)重复(2)(3)(4)直到新的中⼼和原来的中⼼基本不变化的时候,算法结束

三、K-Means聚类原理图c871861e3ae4446a953eb8c5e7bada36.png

四、K-means聚类改进智能优化算法种群初始化效果图

4.1  初始种群数据图

clc;
clear;
close all;
dim=2;%问题维度
pop=200;%种群数量
x_lower = 20e-9;            % 搜索变量x范围下限
y_lower = 0.55;             % 搜索变量y范围下限
x_upper = 500e-9;           % 搜索变量x范围上限
y_upper = 1;                % 搜索变量y范围上限
for i = 1:popdata(i, 1) = x_lower + (x_upper - x_lower) * rand;data(i, 2) = y_lower + (y_upper - y_lower) * rand;  %初始化种群
end

01cdfbad632746e3ac83ca0434e4a8e4.png4.2  K-means聚类结果图

4.2.1  根据K-means聚类原理聚类

聚类数为4时聚类结果:

e870f9e5cdf24a2cb68857762d86d0fc.png

 聚类数为5时聚类结果

f97282af14aa4d34a1631cff53d4e2f2.png

 聚类数为6时聚类结果

5253bf925ac94ae69e2479b811c4256b.png

 4.2.2  根据MATLAB自带kmeans函数聚类

 聚类数为4时聚类结果:

714b04051011492d87144847342a979f.png

 聚类数为5时聚类结果:

f73b451a28a7478aaed4b70a75c4fde1.png  聚类数为6时聚类结果:

276054304e5344c8a3b956fb0fca4451.png

 五、K-means聚类改进智能优化算法种群初始化Matlab部分代码

clc;
clear;
close all;
dim=2;%问题维度
pop=200;%种群数量
x_lower = 20e-9;            % 搜索变量x范围下限
y_lower = 0.55;             % 搜索变量y范围下限
x_upper = 500e-9;           % 搜索变量x范围上限
y_upper = 1;                % 搜索变量y范围上限
for i = 1:popdata(i, 1) = x_lower + (x_upper - x_lower) * rand;data(i, 2) = y_lower + (y_upper - y_lower) * rand;  %初始化种群
end
%% 原理推导K均值
[m,n]=size(data);
cluster_num=6;
cluster=data(randperm(m,cluster_num),:);......%% 画出聚类效果
figure(2)
subplot(2,1,1)
a=unique(index_cluster); %找出分类出的个数
C=cell(1,length(a));
for i=1:length(a)C(1,i)={find(index_cluster==a(i))};
end
for j=1:cluster_numdata_get=data(C{1,j},:);scatter(data_get(:,1),data_get(:,2),100,'filled','MarkerFaceAlpha',.6,'MarkerEdgeAlpha',.9);hold on
end
sc_t=mean(silhouette(data,index_cluster'));
title_str=['K均值聚类','  聚类数为:',num2str(cluster_num),'  SC轮廓系数:',num2str(sc_t)];

 

 

 

 

 

 

这篇关于智能优化算法改进-K-means聚类种群初始化附Matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/199455

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom