详解DFS(深度优先搜索)算法+模板+指数+排列+组合型枚举+带分数四道例题

本文主要是介绍详解DFS(深度优先搜索)算法+模板+指数+排列+组合型枚举+带分数四道例题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 前言:

1.背景

2.图解分析 

 3.算法思想

4.dfs四大例题

 4.1.递归实现指数型枚举

 题解:

4.2.递归实现排列型枚举

题解:

字典序:

4.3.递归实现组合型枚举

 题解:

4.4.带分数

题解:

5.最后:


 前言:

        大家好呀,我是山上雪,时隔多日终于回归,归功于小姑娘的打赏激励以及佬们日更一篇的节奏使得我坐不住了!!

激动万分的写下了该篇博客,文有不足,望各位大佬批评指正

                               动力源泉如下!!!!!!!!!

1.背景

深度优先算法(Depth First Search,简称DFS):本文均采用递归方式,搜索每一条路径,一路走到黑直到不能再走则返回,每个结点仅访问一次。

2.图解分析 

对于这个图   

 我们想到  7这个地方的话怎么走呢?1是起点,有5条可能的路径

 1-2-5

1-2-6

1-3-7(成功)

1-3-8

1-4

可以看出,想要到7则需要遍历所有可能路径,如果加一条件,找到则退出是可以减少计算量的

 3.算法思想

dfs中最重要的算法思想是回溯剪枝

        回溯就是当你面对多条路的时候,你优先选择一条路后,当你选择多条路的另一条路的时候你需要回到初始状态,也就是说,这条路走不通你就退回,然后选择下一条路,满足回溯条件的某个状态的点称为“回溯点”。

       剪枝,因为dfs算法用的递归实现,这时候就可能产生了许多不必要的计算过程,而这些计算过程通常很大。所以我们就可以加一个限制条件,使其不用计算直接返回,这种思想就像是剪掉了树的枝条,所以称为“剪枝”。

4.dfs四大例题

 4.1.递归实现指数型枚举

从 1∼n这 n 个整数中随机选取任意多个,输出所有可能的选择方案。

输入格式

输入一个整数 n。

输出格式

每行输出一种方案。

同一行内的数必须升序排列,相邻两个数用恰好 1个空格隔开。

对于没有选任何数的方案,输出空行。

本题有自定义校验器(SPJ),各行(不同方案)之间的顺序任意。

数据范围

1≤ n ≤15

输入样例:

3

输出样例:


3
2
2 3
1
1 3
1 2
1 2 3

 题解:

这个题关键是按什么顺序枚举,可以对每个数进行分类  选或者不选以及上一个状态  然后输出所有可能性即可  

这里考虑开一个数组用来记录每个数的状态

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=16;//一半空间开大一点,使其从下标1开始容易判断,避免越界
int sd[N];//这里全区变量的话默认数组值为1   状态数组 0为没选 1为选择 2为不选
int cin=0;
//int arr[][N];可以直接输出数,也可以先存在二维数组里再输出
int n;
void dfs(int u)//这里的u代表正在选择的第几个数
{if(u>n)//u大于n则代表已经分析好了n个数,则可以退出{for(int i=1;i<=n;i++){if(sd[i]==1)printf("%d ",i);//枚举1到n的每个数,根据状态选择是否打印}puts("");//相当于printf("\n");return ;}sd[u]=1;//表示当前第u个数可以选择dfs(u+1);//继续判断下一个数sd[u]=0;//恢复现场,本来是1则还是1sd[u]=2;//表示该条路不选第u个数dfs(u+1);//继续判断在该种情况下的下一个数sd[u]=0;//恢复现场}
int main()
{cin >> n;dfs(1);//因为先判断第一个数则初始值为1
return 0;
}

4.2.递归实现排列型枚举

把 1∼n 这 n 个整数排成一行后随机打乱顺序,输出所有可能的次序。

输入格式

一个整数 n。

输出格式

按照从小到大的顺序输出所有方案,每行 1个。

首先,同一行相邻两个数用一个空格隔开。

其次,对于两个不同的行,对应下标的数一一比较,字典序较小的排在前面。

数据范围

1≤ n ≤9

输入样例:

3

输出样例:

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

题解:

字典序:

比如两个数列:A:a1 a2 a3....an和B:b1 b2 b3.....bn

根据序号比较假如想要A>B的话从a1和b1开始比较相等则比较下一个,直到am>bm则算A>B

同理B>A情况相反

而这里只要保证拍的时候数列是升序的,则依次输出的结果就会按照字典序排列

有两种思想:1.依次枚举每个数放到哪个位置

2.依次枚举每个位置放哪个数

下边用的是思想2

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=10;
int stede[N];//全局定义时默数据认为0    保存某个位置时对应的某个数
bool used[N];//全局定义时默认是false    记录该数是否被选过,选过则不再选
int n;
void dfs(int u)//u表示正在排第u个位置
{if(u>n)//表示已经排满n个位置,可以输出了{for(int i=1;i<=n;i++){printf("%d ",stede[i]);//输出数据}puts("");//换行return ;}for(int i=1;i<=n;i++)//从小到大枚举没放过的数{if(!used[i])//状态为没放过的可以进入{stede[u]=i;//第u个位置放iused[i]=true;//数i则改变状态为放过dfs(u+1);//继续判断下一个位置stede[u]=0;//恢复现场used[i]=false;//在上一步中该数没被选过,恢复现场}}}
int main()
{cin>>n;dfs(1);return 0;
}

4.3.递归实现组合型枚举

从 1∼n 这 n个整数中随机选出 m个,输出所有可能的选择方案。

输入格式

两个整数 n,m在同一行用空格隔开。

输出格式

按照从小到大的顺序输出所有方案,每行 1个。

首先,同一行内的数升序排列,相邻两个数用一个空格隔开。

其次,对于两个不同的行,对应下标的数一一比较,字典序较小的排在前面(例如 1 3 5 7 排在 1 3 6 8 前面)。

数据范围

n>0 ,
0≤m≤n
n+(n−m)≤25

输入样例:

5 3

输出样例:

1 2 3 
1 2 4 
1 2 5 
1 3 4 
1 3 5 
1 4 5 
2 3 4 
2 3 5 
2 4 5 
3 4 5 

 题解:

三个位置可以放哪些数,放满则返回数值,这道题跟上边大同小异,可以看到要选出m个数,所以该题有些情况可以不用考虑直接返回的,用到了剪枝思想

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int n,m;
const int N=20;int st[N];//存放某个位置上放某个数
void dfs(int u,int start)//u代表第u个位置  start因为同一行内要求升序,所以下一个位置要从比该位置大的数开始枚举
{if(u+n-start<m)//当满足该条件时选不够m个数,则直接返回return ;if(u==m+1)//此时u个位置均填满是,输出即可{for(int i=1;i<=m;i++){printf("%d ",st[i]);}puts("");return ;}for(int i=start;i<=n;i++){st[u]=i;//第u个位置填idfs(u+1,i+1);st[u]=0;//恢复现场}
}
int main()
{cin>>n>>m;dfs(1,1);return 0;
}

4.4.带分数

题解:

等式可看成N=a+b/c;

      该题直接看感觉不好看,但是我们读题啊,1~n的数都出现,然后分成三段a b c这不就相当于是全排列,然后分三个区间分别将数组里的数转为一个整数,最后再参与运算,满足则计数器加1即可

    即满足:c*N=a*c+b;

所以该题

1.通过dfs函数得到全排列的所有组合

2.将每个组合分成三段,枚举出所有分成三段的情况

3.将每段转化成整数,判断该整数是否满足等式

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N=20;
int n;
int cn=0;//计数器,满足等式则+1
bool sf[N];//记录数是否被选过
int sd[N];
int call(int i,int j)//将每段转化成整数输出,i和j把全排列分成三段
{int num=0;for(;i<=j;i++)
num=num*10+sd[i];return num;
}
void dfsabc()//接收dfs函数传来的每个序列,并进行判断
{
int a,b,c;
for(int i=1;i<=6;i++)//因为N最大是1000000,所以最大是7位数,可以减少计算
{for(int j=i+1;j<=8;j++){a=call(1,i);b=call(i+1,j);c=call(j+1,9);if(c*n==a*c+b)cn++;}
}
}
void dfs(int u)
{if(u>9){dfsabc();//将排列好的序列传给dfsabc加工判断return ;}for(int i=1;i<=9;i++){if(!sf[i]){sd[u]=i;sf[i]=true;dfs(u+1);sd[u]=0;sf[i]=false;}}
}
int main()
{cin>>n;dfs(1);printf("%d",cn);return 0;
}

5.最后:

dfs深度搜索算法属于算法的入门级别,建议配合着画图学习效果更佳

码文不易,求三连~

这篇关于详解DFS(深度优先搜索)算法+模板+指数+排列+组合型枚举+带分数四道例题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/198599

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

Rust 数据类型详解

《Rust数据类型详解》本文介绍了Rust编程语言中的标量类型和复合类型,标量类型包括整数、浮点数、布尔和字符,而复合类型则包括元组和数组,标量类型用于表示单个值,具有不同的表示和范围,本文介绍的非... 目录一、标量类型(Scalar Types)1. 整数类型(Integer Types)1.1 整数字

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree