详解DFS(深度优先搜索)算法+模板+指数+排列+组合型枚举+带分数四道例题

本文主要是介绍详解DFS(深度优先搜索)算法+模板+指数+排列+组合型枚举+带分数四道例题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 前言:

1.背景

2.图解分析 

 3.算法思想

4.dfs四大例题

 4.1.递归实现指数型枚举

 题解:

4.2.递归实现排列型枚举

题解:

字典序:

4.3.递归实现组合型枚举

 题解:

4.4.带分数

题解:

5.最后:


 前言:

        大家好呀,我是山上雪,时隔多日终于回归,归功于小姑娘的打赏激励以及佬们日更一篇的节奏使得我坐不住了!!

激动万分的写下了该篇博客,文有不足,望各位大佬批评指正

                               动力源泉如下!!!!!!!!!

1.背景

深度优先算法(Depth First Search,简称DFS):本文均采用递归方式,搜索每一条路径,一路走到黑直到不能再走则返回,每个结点仅访问一次。

2.图解分析 

对于这个图   

 我们想到  7这个地方的话怎么走呢?1是起点,有5条可能的路径

 1-2-5

1-2-6

1-3-7(成功)

1-3-8

1-4

可以看出,想要到7则需要遍历所有可能路径,如果加一条件,找到则退出是可以减少计算量的

 3.算法思想

dfs中最重要的算法思想是回溯剪枝

        回溯就是当你面对多条路的时候,你优先选择一条路后,当你选择多条路的另一条路的时候你需要回到初始状态,也就是说,这条路走不通你就退回,然后选择下一条路,满足回溯条件的某个状态的点称为“回溯点”。

       剪枝,因为dfs算法用的递归实现,这时候就可能产生了许多不必要的计算过程,而这些计算过程通常很大。所以我们就可以加一个限制条件,使其不用计算直接返回,这种思想就像是剪掉了树的枝条,所以称为“剪枝”。

4.dfs四大例题

 4.1.递归实现指数型枚举

从 1∼n这 n 个整数中随机选取任意多个,输出所有可能的选择方案。

输入格式

输入一个整数 n。

输出格式

每行输出一种方案。

同一行内的数必须升序排列,相邻两个数用恰好 1个空格隔开。

对于没有选任何数的方案,输出空行。

本题有自定义校验器(SPJ),各行(不同方案)之间的顺序任意。

数据范围

1≤ n ≤15

输入样例:

3

输出样例:


3
2
2 3
1
1 3
1 2
1 2 3

 题解:

这个题关键是按什么顺序枚举,可以对每个数进行分类  选或者不选以及上一个状态  然后输出所有可能性即可  

这里考虑开一个数组用来记录每个数的状态

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=16;//一半空间开大一点,使其从下标1开始容易判断,避免越界
int sd[N];//这里全区变量的话默认数组值为1   状态数组 0为没选 1为选择 2为不选
int cin=0;
//int arr[][N];可以直接输出数,也可以先存在二维数组里再输出
int n;
void dfs(int u)//这里的u代表正在选择的第几个数
{if(u>n)//u大于n则代表已经分析好了n个数,则可以退出{for(int i=1;i<=n;i++){if(sd[i]==1)printf("%d ",i);//枚举1到n的每个数,根据状态选择是否打印}puts("");//相当于printf("\n");return ;}sd[u]=1;//表示当前第u个数可以选择dfs(u+1);//继续判断下一个数sd[u]=0;//恢复现场,本来是1则还是1sd[u]=2;//表示该条路不选第u个数dfs(u+1);//继续判断在该种情况下的下一个数sd[u]=0;//恢复现场}
int main()
{cin >> n;dfs(1);//因为先判断第一个数则初始值为1
return 0;
}

4.2.递归实现排列型枚举

把 1∼n 这 n 个整数排成一行后随机打乱顺序,输出所有可能的次序。

输入格式

一个整数 n。

输出格式

按照从小到大的顺序输出所有方案,每行 1个。

首先,同一行相邻两个数用一个空格隔开。

其次,对于两个不同的行,对应下标的数一一比较,字典序较小的排在前面。

数据范围

1≤ n ≤9

输入样例:

3

输出样例:

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

题解:

字典序:

比如两个数列:A:a1 a2 a3....an和B:b1 b2 b3.....bn

根据序号比较假如想要A>B的话从a1和b1开始比较相等则比较下一个,直到am>bm则算A>B

同理B>A情况相反

而这里只要保证拍的时候数列是升序的,则依次输出的结果就会按照字典序排列

有两种思想:1.依次枚举每个数放到哪个位置

2.依次枚举每个位置放哪个数

下边用的是思想2

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=10;
int stede[N];//全局定义时默数据认为0    保存某个位置时对应的某个数
bool used[N];//全局定义时默认是false    记录该数是否被选过,选过则不再选
int n;
void dfs(int u)//u表示正在排第u个位置
{if(u>n)//表示已经排满n个位置,可以输出了{for(int i=1;i<=n;i++){printf("%d ",stede[i]);//输出数据}puts("");//换行return ;}for(int i=1;i<=n;i++)//从小到大枚举没放过的数{if(!used[i])//状态为没放过的可以进入{stede[u]=i;//第u个位置放iused[i]=true;//数i则改变状态为放过dfs(u+1);//继续判断下一个位置stede[u]=0;//恢复现场used[i]=false;//在上一步中该数没被选过,恢复现场}}}
int main()
{cin>>n;dfs(1);return 0;
}

4.3.递归实现组合型枚举

从 1∼n 这 n个整数中随机选出 m个,输出所有可能的选择方案。

输入格式

两个整数 n,m在同一行用空格隔开。

输出格式

按照从小到大的顺序输出所有方案,每行 1个。

首先,同一行内的数升序排列,相邻两个数用一个空格隔开。

其次,对于两个不同的行,对应下标的数一一比较,字典序较小的排在前面(例如 1 3 5 7 排在 1 3 6 8 前面)。

数据范围

n>0 ,
0≤m≤n
n+(n−m)≤25

输入样例:

5 3

输出样例:

1 2 3 
1 2 4 
1 2 5 
1 3 4 
1 3 5 
1 4 5 
2 3 4 
2 3 5 
2 4 5 
3 4 5 

 题解:

三个位置可以放哪些数,放满则返回数值,这道题跟上边大同小异,可以看到要选出m个数,所以该题有些情况可以不用考虑直接返回的,用到了剪枝思想

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int n,m;
const int N=20;int st[N];//存放某个位置上放某个数
void dfs(int u,int start)//u代表第u个位置  start因为同一行内要求升序,所以下一个位置要从比该位置大的数开始枚举
{if(u+n-start<m)//当满足该条件时选不够m个数,则直接返回return ;if(u==m+1)//此时u个位置均填满是,输出即可{for(int i=1;i<=m;i++){printf("%d ",st[i]);}puts("");return ;}for(int i=start;i<=n;i++){st[u]=i;//第u个位置填idfs(u+1,i+1);st[u]=0;//恢复现场}
}
int main()
{cin>>n>>m;dfs(1,1);return 0;
}

4.4.带分数

题解:

等式可看成N=a+b/c;

      该题直接看感觉不好看,但是我们读题啊,1~n的数都出现,然后分成三段a b c这不就相当于是全排列,然后分三个区间分别将数组里的数转为一个整数,最后再参与运算,满足则计数器加1即可

    即满足:c*N=a*c+b;

所以该题

1.通过dfs函数得到全排列的所有组合

2.将每个组合分成三段,枚举出所有分成三段的情况

3.将每段转化成整数,判断该整数是否满足等式

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N=20;
int n;
int cn=0;//计数器,满足等式则+1
bool sf[N];//记录数是否被选过
int sd[N];
int call(int i,int j)//将每段转化成整数输出,i和j把全排列分成三段
{int num=0;for(;i<=j;i++)
num=num*10+sd[i];return num;
}
void dfsabc()//接收dfs函数传来的每个序列,并进行判断
{
int a,b,c;
for(int i=1;i<=6;i++)//因为N最大是1000000,所以最大是7位数,可以减少计算
{for(int j=i+1;j<=8;j++){a=call(1,i);b=call(i+1,j);c=call(j+1,9);if(c*n==a*c+b)cn++;}
}
}
void dfs(int u)
{if(u>9){dfsabc();//将排列好的序列传给dfsabc加工判断return ;}for(int i=1;i<=9;i++){if(!sf[i]){sd[u]=i;sf[i]=true;dfs(u+1);sd[u]=0;sf[i]=false;}}
}
int main()
{cin>>n;dfs(1);printf("%d",cn);return 0;
}

5.最后:

dfs深度搜索算法属于算法的入门级别,建议配合着画图学习效果更佳

码文不易,求三连~

这篇关于详解DFS(深度优先搜索)算法+模板+指数+排列+组合型枚举+带分数四道例题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/198599

相关文章

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步