R语言样条曲线、泊松回归模型估计女性直肠癌患者标准化发病率(SIR)、标准化死亡率(SMR)

本文主要是介绍R语言样条曲线、泊松回归模型估计女性直肠癌患者标准化发病率(SIR)、标准化死亡率(SMR),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近我们被客户要求撰写关于发病率(SIR)、标准化死亡率(SMR)的研究报告,包括一些图形和统计输出。

 相关视频:非线性模型原理与R语言多项式回归、局部平滑样条、 广义相加模型GAM分析

非线性模型原理与R语言多项式回归、局部平滑样条、 广义相加模型GAM分析

,时长05:41

简介

标准化发病率(SIR)或死亡率(SMR)是观察病例和期望病例的比率。观察到的病例是队列中病例的绝对数量。期望病例是通过将队列中的人-年数与参考人口比率相乘得出的。该比率应按混杂因素进行分层或调整。通常这些因素是年龄组、性别、日历期和可能的癌症类型或其他混杂变量。也可以使用社会经济地位或地区变量。

在参考人口中,第j层的期望比率是λj=dj/nj,其中dj是观察到的病例,nj是观察到的人年。现在SIR可以写成一个比率

标化发病比(SIR)=实际观察发病人数/期望发病人数

或  标化死亡比(SMR)=实际观察死亡人数/期望死亡人数

其中D是队列人群中的观察病例,E是期望数。单变量置信区间是基于泊松分布的精确值,P值的公式为

建模的SIR是一个泊松回归模型,有对数连接和队列人-年作为偏移。

在泊松模型的SIR中可以用似然比检验来检验SIR的同质性。

同样的工作流程适用于标准化的死亡率。

样条曲线

可以为时间变量(如年龄组)拟合一个连续的样条函数。曲线的想法是平滑SMR估计值,并从曲线图中进行推断。这需要预定义的结点/节点,用于拟合样条曲线。选择结的数量和结的位置是一个非常主观的问题,有三个选项可以将样条曲线结传递给函数。

在不同的结点设置之间进行尝试是很好的做法,以获得真实的样条曲线估计。过度拟合可能会在估计中造成假象,欠拟合可能会使模式变得平滑。

样条曲线变量应该是尽可能连续的,例如从18到100个时间点。但是,当把时间分割成太窄的区间时,在期望或人口比率值中可能会出现随机的变化。因此,也可以为年龄或时期做两个变量:第一个是用于标准化的较宽区间,第二个是用于拼接的窄区间。

结点

有三个选项可用于为样条曲线指定结点。

  1. 每个样条曲线变量的结数的向量。节点数量包括边界节点,因此最小的节点数量是2,这是一个对数线性关联。节点是利用观察到的样例的量纲自动放置的。

  2. 预定义结点的向量列表。矢量的数量需要与样条曲线变量的长度相匹配。每个向量至少要有边界结点的最小值和最大值。

  3. NULL将根据AIC自动找到最佳结点数量。节点是根据观察到的案例的数量级来放置的。这通常是一个开始拟合过程的合理初始值。

结的数量和结的位置可以在输出中找到。

SMR

死亡率、外部队列和数据

估计一个女性直肠癌患者队列的SMR。每个年龄段、时期和性别的死亡率都可以在数据集中找到。


SMR( status, birthdate, exitdate, entrydate ,  rate = 'haz', print ='fot')

其他原因的SMR在两个随访区间都是1。此外,P值表明SMR估计值之间没有异质性(P=0.735)。

总死亡率可以通过修改状态参数来估计。现在我们要计算所有的死亡,即状态为1或2。

smr(  status = status %in% 1:2)

现在随访区间的估计值似乎有很大的不同,P=0。绘制SMR。

plot(se)

样条曲线

让我们用两个不同的选项来拟合后续时间和年龄组的样条:样条在不同的模型和同一模型中被拟合,splines。

smrspline(data, rate = 'haz', spline )plot(sf)

plot(st, col=4, log=TRUE)

在从属样条曲线中,fot是以零时间为参考点的比率。参考点可以被改变。这里假设每个随访时间的年龄组情况是相同的。从0到10年的随访,SMR是0.2倍。

也可以对样条曲线进行分层。例如,我们把死亡时间分成两个时间段,并测试年龄组的样条是否相等。 

year. <- ifelse(year < 2002, 1, 2)

对于2002年以前的类别,50岁以后的SMR似乎更高。另外,P值(<0.0001)表明,2002年之前和之后的年龄组趋势存在差异。


这篇关于R语言样条曲线、泊松回归模型估计女性直肠癌患者标准化发病率(SIR)、标准化死亡率(SMR)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/198332

相关文章

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

使用Go语言开发一个命令行文件管理工具

《使用Go语言开发一个命令行文件管理工具》这篇文章主要为大家详细介绍了如何使用Go语言开发一款命令行文件管理工具,支持批量重命名,删除,创建,移动文件,需要的小伙伴可以了解下... 目录一、工具功能一览二、核心代码解析1. 主程序结构2. 批量重命名3. 批量删除4. 创建文件/目录5. 批量移动三、如何安

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型